man’.org

Training and Consulting

Linux/UNIX Threads and IPC Programming

Course code: M7D-TIPCO1

This course provides a grounding in multithreaded programming using
POSIX threads as well as a deep understanding of various IPC (inter-
process communication) techniques that can be used to build coop-
erating multiprocess applications. Detailed presentations coupled with
many carefully designed practical exercises provide participants with the
knowledge needed to write complex system, network, and multithreaded

applications.

THE LINUX
PROGRAMMING
INTERFACE

A Linux and UNIX" System Programming Handbook

Audience and prerequisites

The audience for this course includes programmers devel-
oping and porting system-level and network applications for
Linux and UNIX systems, embedded application developers,
security engineers, site reliability engineers, and DevOps en-
gineers. To get the most out of the course, participants
should have:

e Good reading knowledge of the C programming language

e Solid programming experience in a language suitable for
completing the course exercises (e.g., C, C++, D, Go,
Rust, or Python)

e Knowledge of basic UNIX/Linux shell commands

Some system programming background is assumed. Where
necessary, such background can be gained from either
the Linux System Programming Fundamentals (M7D-
SPINTROO1) or the Linux System Programming Essentials
(M7D-SPESSO01) course.

Course duration and format

Three days, with up to 40% devoted to practical sessions.

Course materials

e Course books (written by the trainer) that include all slides
and exercises presented in the course

e An electronic copy of the trainer's book, The Linux Pro-
gramming Interface

e Numerous example programs written by the course trainer

Course inquiries and bookings

For inquiries about courses and consulting, you can contact
us in the following ways:

e Email: training@man7.org
e Phone: +49 (89) 2488 6180 (German landline)

Prices, dates, and further details

For course prices, upcoming course dates, and further infor-
mation about the course, please visit the course web page,
http://man7.org/training/lusp/|

About the trainer

programming courses in 1989.

http://man7.org/training/

Michael Kerrisk has a unique set of qualifications
and experience that ensure that course partici-
pants receive training of a very high standard:

e He has been programming on UNIX systems
since 1987 and began teaching UNIX system

e He is the author of The Linux Programming

Interface, a 1550-page book acclaimed as the
definitive work on Linux system programming.

B8 training@man7.org

e He has been actively involved in Linux de-
velopment, working with kernel developers
on testing, review, and design of new Linux
kernel-user-space APls.

e Since 2000, he has been the involved in the
Linux man-pages project, which provides the
manual pages documenting Linux system calls
and C library APIs, and was the project main-
tainer from 2004 to 2021.

(v2026-01-05 #aac6dles) Page 1


http://man7.org/training/lusp/
http://man7.org/training/

http://man7.org/training/

Linux/UNIX Threads and IPC Programming: course contents in detail

Topics marked with an asterisk (*) are optional, and will be covered as time permits

. Threads: Introduction

e Overview of threads

e Pthreads API basics

Thread creation and termination
Thread IDs

Joining and detaching threads
Thread attributes

Signals and threads

Threads and process control
. Threads: Synchronization

Shared resources and critical sections
Mutexes

Locking and unlocking a mutex
Condition variables

Signaling and waiting on condition variables
Further details on signaling condition variables

Dynamically initialized synchronization primitives

Other synchronization primitives

. IPC: Introduction and Overview (*)
e Categorizing IPC

e Choosing an IPC mechanism

. Pipes and FIFOs

e Creating and using pipes
e FIFOs
e Connecting filters with pipes

. Sockets: Introduction

e Socket types and domains
e Creating and binding a socket (socket() and

bind())

Overview of stream sockets

listen() and pending connections
accept() and connect()

[/O on stream sockets

Overview of datagram sockets

e |/O on datagram sockets
. Internet Domain Sockets

e Internet domain sockets
e Data-representation issues
e Presentation-format addresses

7.

10.

11.

12.

13.

B8 training@man7.org

e Loopback and wildcard addresses
e Internet domain stream sockets example

Internet Domain Sockets: Address Conversion

e Host addresses and port numbers
e Host and service conversion
e Internet domain sockets example with

getaddrinfo()

. Sockets: Further Details

e Socket shutdown (shutdown())
e Socket options
e TCP TIME-WAIT state and SO_REUSEADDR

. UNIX Domain Sockets

e UNIX domain stream sockets
e UNIX domain datagram sockets
o Further details of UNIX domain sockets

Alternative I/O Models
Nonblocking 1/0
Signal-driven 1/0

[/O multiplexing: poll()
Event-loop programming

Alternative I/O Models: epoll

Problems with poll() and select()
The epoll API

Creating an epoll instance: epoll create()

Populating the interest list: epoll ctl()
epoll events
Waiting for events: epoll _wait()

Performance considerations
e Edge-triggered notification
e epoll API quirks

POSIX Semaphores

e Named semaphores
e Semaphore operations
e Unnamed semaphores

POSIX Shared Memory

e Creating and opening shared memory objects
e Using shared memory objects
e Synchronizing access to shared memory

(v2026-01-05 #aac6dles) Page 2


http://man7.org/training/

	Audience and prerequisites
	Course duration and format
	Course materials
	Course inquiries and bookings
	Prices, dates, and further details
	toAbout the trainer

