man’.org

Training and Consulting

System Programming for Linux Containers

Course code: M7D-SPLC02

This course provides a deep understanding of the Linux technologies (namely, set-
UID/set-GID programs, capabilities, namespaces, cgroups, and seccomp) used
to implement container, virtualization, and sandboxing systems. (These are the
technologies used to build systems such as Docker, LXC, Firejail, and Flatpak.)
The course also provides an understanding of the core APIs used to build system-
level applications that run on such systems. Detailed explanations and carefully
designed practical exercises provide participants with the knowledge needed both
to troubleshoot container and sandboxing systems and to write complex appli-

cations that run on those systems.

THE LINUX
PROGRAMMING
INTERFACE

ALinux and UNIX System Programming Handbook

MICHAEL KERRISK

Audience and prerequisites

The audience for this course includes designers, developers,
and DevOps who are building, troubleshooting, and adminis-
tering container and sandboxing systems, as well as designers
and developers who are implementing applications to run on
such systems.

Participants should have a good reading knowledge of
the C programming language and some programming ex-
perience in a language suitable for completing the course
exercises (e.g., C, C++, Go, Rust). (Note, however, that,
except on the first day of the course, most of the course
exercises do not require writing programs.)

Previous system programming experience is not required.

Related courses
This course is equivalent to the combination of the following

two courses:

e Linux/UNIX System Programming Essentials, MT7D-

SPESS01
e Linux Security and Isolation APIs, M7D-SECISOL02

Course duration and format

Five days, with up to 40% devoted to practical sessions.

Course materials

e Course books (written by the trainer) that include all slides
and exercises presented in the course

e An electronic copy of the trainer's book, The Linux Pro-
gramming Interface

e Numerous example programs written by the course trainer

Course inquiries and bookings

For inquiries about courses and consulting, you can contact
us in the following ways:

e Email: training@man7.org
e Phone: +49 (89) 2488 6180 (German landline)

Prices, dates, and further details

For course prices, upcoming course dates, and further infor-
mation about the course, please visit the course web page,
http://man7.org/training/splc/.

About the trainer

programming courses in 1989.

http://man7.org/training/

Michael Kerrisk has a unique set of qualifications
and experience that ensure that course partici-
pants receive training of a very high standard:

e He has been programming on UNIX systems
since 1987 and began teaching UNIX system

e He is the author of The Linux Programming

Interface, a 1550-page book acclaimed as the
definitive work on Linux system programming.

B8 training@man7.org

e He has been actively involved in Linux de-
velopment, working with kernel developers
on testing, review, and design of new Linux
kernel-user-space APls.

e Since 2000, he has been the involved in the
Linux man-pages project, which provides the
manual pages documenting Linux system calls
and C library APIs, and was the project main-
tainer from 2004 to 2021.

(v2025-12-18 #0d5a796b) Page 1

http://man7.org/training/splc/
http://man7.org/training/

System Programming for Linux Containers: course contents in detail

Topics marked with an asterisk (*) are optional, and will be covered as time permits

. Course Introduction
. Fundamental Concepts

e Error handling
e System data types
e Notes on code examples

. File I/O

e File 1/0 overview
e open(), read(), write(), and
close()

. Processes

Process IDs

Process memory layout
Command-line arguments
The environment list
The /proc filesystem

. Signals

Overview of signals

Signal dispositions

Useful signal-related functions
Signal handlers

Designing signal handlers

. Process Lifecycle

e Creating a new process: fork()
Process termination
Monitoring child processes
Orphans and zombies

The SIGCHLD signal

Executing programs: execve()

. System Call Tracing with
strace (*)

e Getting started
e Tracing child processes
e Filtering strace output

. Security and Isolation APIs
Overview (*)

e Sandboxing
e Containers

. Classical Privileged Programs

e A simple set-user-ID program

e Saved set-user-ID and and
saved set-group-1D

e Changing process credentials

e A few guidelines for writing
privileged programs

http://man7.org/training/

10.

11.

12.

13.

14,

15.

16.

Capabilities

e Process and file capabilities

e Permitted and effective
capabilities

e Setting and viewing file
capabilities

e Capabilities-dumb and
capabilities-aware applications

e Text-form capabilities

Capabilities and execve()

Capabilities and execve()

The capability bounding set

Inheritable capabilities

Summary of process capability

sets (so far)

e Problems with inheritable
capabilities

e Ambient capabilities

e An alternative summary of
process capability sets

e Summary remarks

Capabilities and UID 0

e Capabilities and UID transitions

e Capabilities, UID 0, and
execve()

e Making a capabilities-only
environment: securebits (*)

Programming with capabilities
(*)

e Programming with capabilities
Namespaces

e An example: UTS namespaces
Namespaces commands
Namespaces demonstration
(UTS namespaces)
Namespace types and APls
Namespaces, containers, and
virtualization

Mount Namespaces and
Shared Subtrees

e Mount namespaces
e Shared subtrees
e Bind mounts

Mount Namespaces: Further
Details (*)

B8 training@man7.org

17.

18.

19.

20.

21.

22.

Peer groups

Private mounts

Slave mounts

Unbindable mounts

Mounting a container filesystem

PID Namespaces

PID namespaces

Other Namespaces

IPC namespaces
Time namespaces
Cgroup namespaces
Network namespaces

Namespaces APls

API Overview

Creating a child process in new
namespaces: clone()
/proc/PID/ns

Entering a namespace: setns()
Creating a namespace:
unshare()

PID namespaces idiosyncrasies
Namespace lifetime (*)

User Namespaces

Overview of user namespaces

e Creating and joining a user

namespace
User namespaces: UID and GID
mappings

Accessing files (and other
objects with UIDs/GIDs)
Security issues

Combining user namespaces
with other namespaces

Use cases

User namespaces, execve(),
and user ID 0

User namespaces, execve(), and
user ID 0

User Namespaces and
Capabilities

User namespaces and
capabilities

What does it mean to be
superuser in a namespace?
Discovering namespace
relationships

(v2025-12-18 #0d5a796b) Page 2

http://man7.org/training/

e File-related capabilities (*)

23. User Namespaces and
Privileged Programs (*)

e User namespace “set-UID-root”
programs
e Namespaced file capabilities

24. Seccomp

e Seccomp filtering and BPF

e The BPF virtual machine and

BPF instructions

BPF filter return values

Installing a BPF program

BPF program examples

Checking the architecture

Productivity aids (/ibseccomp

and other tools)

Performance considerations

e Applications and further
information

25. Seccomp: Further Details (*)

o Caveats

e Discovering the system calls
made by a program

e Installing multiple filters

e Interaction with fork() and
execve()

e Extended BPF (eBPF)

e Other filter return actions

http://man7.org/training/

e Further details on BPF
programs

e Recent seccomp features

e Audit logging of filter actions

26. Cgroups: Introduction

e Preamble

e What are control groups?

e An example: the pids
controller

e Creating and destroying cgroups

e Populating a cgroup

e Enabling and disabling
controllers

27. Cgroups: A Survey of the
Controllers

e The cpu, memory, freezer,
and pids controllers
e Other controllers

28. Cgroups: Advanced Features
e Cgroup namespaces
e Release notification

(cgroup.events file)
e Delegation

29. Cgroups: Thread Mode (*)

e Overview of thread mode
e Creating and using a threaded
subtree

30. Cgroups Version 1 (¥)

B8 training@man7.org

31.

e Cgroups v1: hierarchies and
controllers

e Cgroups v1: populating a
cgroup

e Cgroups v1: release notification

e Cgroups vl: delegation

e Problems with cgroups v1;
rationale for v2

Linux containers in 100 lines of
shell (*)

e Building a container from the
shell

e The container root filesystem
(OverlayFS)

e Isolating the container:
namespaces

e Isolating the container: cgroups

e Container set-up stage 1:
cgroups + namespaces

e Container set-up stage 2:
mounts and pivot_ root()

e Starting up the container

Namespaces inside the

container

Superuser inside a container

Cgroups inside the container

Networking inside the container

One more thing...

Postscript: ID-mapped mounts

(v2025-12-18 #0d5a796b) Page 3

http://man7.org/training/

	Audience and prerequisites
	Related courses
	Course duration and format
	Course materials
	Course inquiries and bookings
	Prices, dates, and further details
	toAbout the trainer

