man’.org

Training and Consulting

Building and Using Shared Libraries on Linux

Course code: M7D-SHLIB04

This course provides a thorough understanding of the process of
designing, building, and using shared libraries on Linux.
presentations coupled with carefully designed practical exercises pro-
vide participants with the knowledge needed to understand, design,

create, and deploy shared libraries.

THE LINUX
PROGRAMMING
INTERFACE

Detailed

fandbaok

Audience and prerequisites

The primary audience comprises designers and programmers
building and deploying shared libraries on Linux. Systems
administrators are likely to also find the course of benefit
for the purpose of troubleshooting problems with shared li-
braries.

Participants should have a good reading knowledge of
the C programming language and some programming ex-
perience in a language suitable for completing the course
exercises (e.g., C, C++). No previous experience of working
with shared libraries is required.

Course materials

o A course book (written by the trainer) that includes all
course slides and exercises

e An electronic copy of the trainer's book, The Linux Pro-
gramming Interface

e A source code tarball containing all of the example pro-

grams written by the trainer to accompany the presenta-
tion
Course duration and format

2.5 days, with around 40% devoted to practical sessions.

Course inquiries and bookings
For inquiries about courses and consulting, you can contact

us in the following ways:

e Email: training@man7.org
e Phone: +49 (89) 2488 6180 (German landline)

Prices and further details

For course prices, upcoming course dates, and further infor-
mation about the course, please visit the course web page,
http://man7.org/training/shlib/|

About the trainer

programming courses in 1989.

http://man7.org/training/

Michael Kerrisk has a unique set of qualifications
and experience that ensure that course partici-
pants receive training of a very high standard:

e He has been programming on UNIX systems
since 1987 and began teaching UNIX system

e He is the author of The Linux Programming

Interface, a 1550-page book acclaimed as the
definitive work on Linux system programming.

B8 training@man7.org

e He has been actively involved in Linux de-
velopment, working with kernel developers
on testing, review, and design of new Linux
kernel-user-space APls.

e Since 2000, he has been the involved in the
Linux man-pages project, which provides the
manual pages documenting Linux system calls
and C library APIs, and was the project main-
tainer from 2004 to 2021.

(v2025-12-12 #315bba21) Page 1

http://man7.org/training/shlib/
http://man7.org/training/

http://man7.org/training/

Building and Using Shared Libraries on Linux: course contents in detail

Topics marked with an asterisk (*) are optional, and will be covered as time permits

. Course Introduction
. Fundamentals of Shared Libraries

Background

The static linker and the dynamic linker

Static vs shared libraries

Basics of shared library creation and use
Position-independent code (PIC)

The shared library soname

In pictures: library creation, linking, and loading

. Versioning and Installation

e Shared library versioning

e Shared library real names, sonames, and linker
names

e Installing shared libraries

e [dconfig

. ELF (Executable and Linkable Format)

ELF file layout

The program header table (PHT)

The section header table (SHT)

Program header table vs section header table
ELF sections

Useful commands: readelf and objdump

. The Dynamic Linker

Rpath: specifying library search paths in an object
Dynamic string tokens

Finding shared libraries at run time

How programs get run

. Symbol Interposition and Library Load Order

Symbol resolution and symbol interposition
Symbol resolution and library load order
Link-map lists

The global look-up scope

LD_DEBUG: tracing the dynamic linker

. Dynamically Loaded Libraries (dlopen)

Opening a shared library: dlopen()
Obtaining the address of a symbol: dlsym()
The dlopen API: example

Use cases

The dlopen API: further details

. Shared Libraries and the Static Linker

e Recording dynamic dependencies
e How the static linker finds library dependencies
e Handling secondary dependencies at link time

. Symbol Visibility
e Controlling symbol visibility

e Controlling symbol visibility: —Bsymbolic
e Symbol attributes: binding and visibility

10.

11.

12,

13.

14,

15.

16.

Controlling visibility on a per-symbol basis
Using version scripts to control symbol visibility
Summary of techniques for visibility control
Run-time visibility control: dlopen()-ed libraries

Look-up Scopes

Look-up scopes
LD_DEBUG=scopes

Preloading

Preloading shared libraries
Preloading example
Use cases for preloading

Weak Symbols (*)

Weak symbols

Linker rules for strong and weak symbols

Use cases for weak symbols

Use case: testing whether a symbol definition exists
Use case: overridable weak implementation

Use case: overridable weak alias

Symbol Versioning

Creating a symbol-versioned library

An aside: version “dependencies”
Summary: assigning a version to a symbol
Symbol versioning and symbol resolution
ELF and symbol versioning

Advantages of symbol versioning
Referencing a nondefault symbol version
Removing a public versioned symbol

The library base version

Appendix: version node syntax

Appendix: the .symver assembler directive

Symbol Versioning: Further Topics (*)

Symbol versioning design approaches

Transitioning an existing library to symbol versioning
Further details on symbol versioning

Symbol-version matching rules

Addendum: a few C++ details

Lazy Binding (*)

Lazy binding
Immediate binding
Lazy binding versus immediate binding

GOT and PLT (*)

B8 training@man7.org

The GOT and PLT

Relocation and the PLT: in pictures

Relocation and the PLT: code

Observing the effect of lazy binding on the GOT
Performance considerations

(v2025-12-12 #315bba21) Page 2

http://man7.org/training/

	Audience and prerequisites
	Course materials
	Course duration and format
	Course inquiries and bookings
	Prices and further details
	toAbout the trainer

