man’.org

Training and Consulting

Linux/UNIX System Programming

Course code: M7D-LUSPO01

This course provides a deep understanding of the operating system architecture
and low-level interfaces required to build system-level applications on Linux and
UNIX systems ranging from embedded processors to enterprise servers. Detailed
presentations coupled with many carefully designed practical exercises provide
participants with the knowledge needed to write complex system, network, and
multithreaded applications. The course dives into many specifics of the Linux
system, but makes frequent reference to the POSIX standard, so that it is also
valuable to developers working on other UNIX systems.

THE LINUX
PROGRAMMING
INTERFACE

ook

Audience and prerequisites

The audience for this course includes programmers devel-
oping and porting system-level and network applications for
Linux and UNIX systems, embedded application developers,
security engineers, site reliability engineers, and DevOps en-
gineers. To get the most out of the course, participants
should have:

e Good reading knowledge of the C programming language

e Solid programming experience in a language suitable for
completing the course exercises (e.g., C, C++, D, Go,
Rust, or Python)

e Knowledge of basic UNIX/Linux shell commands

No previous system programming experience is required.

Related courses

This course is also available as separate smaller pieces:

e System Programming Fundamentals, M7D-SPINTRO01

e Threads and IPC Programming, M7D-TIPC01

Course duration and format

Five days, with up to 40% devoted to practical sessions.

Course materials

e Course books (written by the trainer) that include all slides
and exercises presented in the course

e A copy of the trainer's book, The Linux Programming
Interface

e Numerous example programs written by the course trainer

Course inquiries and bookings

For inquiries about courses and consulting, you can contact
us in the following ways:

e Email: training@man7.org
e Phone: +49 (89) 2488 6180 (German landline)

Prices, dates, and further details

For course prices, upcoming course dates, and further infor-
mation about the course, please visit the course web page,
http://man7.org/training/lusp/.

About the trainer

programming courses in 1989.

http://man7.org/training/

Michael Kerrisk has a unique set of qualifications
and experience that ensure that course partici-
pants receive training of a very high standard:

e He has been programming on UNIX systems
since 1987 and began teaching UNIX system

e He is the author of The Linux Programming

Interface, a 1550-page book acclaimed as the
definitive work on Linux system programming.

B8 training@man7.org

e He has been actively involved in Linux de-
velopment, working with kernel developers
on testing, review, and design of new Linux
kernel-user-space APls.

e Since 2000, he has been the involved in the
Linux man-pages project, which provides the
manual pages documenting Linux system calls
and C library APIs, and was the project main-
tainer from 2004 to 2021.

(v2026-01-05 #aac6dles) Page 1


http://man7.org/training/lusp/
http://man7.org/training/

[ay

Linux/UNIX System Programming: course contents in detail

Topics marked with an asterisk (*) are optional, and will be covered as time permits

Course Introduction
Fundamental Concepts

System calls and library functions
Error handling

System data types

Notes on code examples

File 1/O

e File I/O overview
e open(), read(), write(), and
close()

File 1/0 Buffering

e Kernel buffering
e User-space (stdio) buffering
e Controlling kernel buffering

File 1/0: Further Details

The file offset and Iseek()
Atomicity

Relationship between file
descriptors and open files
Duplicating file descriptors
File status flags (and fcntl())
Other file 1/0O interfaces (*)

. Files

e Inodes

e Retrieving file information: stat()
e File mode

e Changing file attributes

. Directories and Links (*)

e Directories and (hard) links

e Symbolic links

e Hard links: system calls and
library functions

e Symbolic links: system calls and
library functions

e Current working directory

e Operating relative to a directory

(openat() etc.)
e Scanning directories

Processes

Process IDs

Process memory layout
Command-line arguments

The environment list

Process credentials

Process groups and sessions (*)
Nonlocal gotos

Signals

Overview of signals

Signal dispositions

Useful signal-related functions
Signal handlers

Signal sets, the signal mask, and
pending signals

e Designing signal handlers

http://man7.org/training/

10.

11.

12.

13.

14.

15.

16.

17.

18.

Signals: Signal Handlers

e Async-signal-safe functions
e Interrupted system calls

e SA_SIGINFO signal handlers
e The signal trampoline (*)

Process Creation and Termination

Creating a new process: fork()
File descriptors and fork()
Process termination
Monitoring child processes
Orphans and zombies

The SIGCHLD signal

PID file descriptors

Executing Programs

Executing programs: execve()
The exec() library functions
File descriptors and exec()
Process attributes during fork()
and exec()

System Call Tracing with strace (*)

e Getting started
e Tracing child processes
e Filtering strace output

Threads: Introduction

Overview of threads

Pthreads API basics

Thread creation and termination
Thread IDs

Joining and detaching threads
Thread attributes

Signals and threads

Threads and process control

Threads: Synchronization

e Shared resources and critical

sections

Mutexes

Locking and unlocking a mutex

Condition variables

Signaling and waiting on condition

variables

e Further details on signaling
condition variables

e Dynamically initialized
synchronization primitives

e Other synchronization primitives

IPC: Introduction and Overview (*)
e Categorizing IPC

e Choosing an IPC mechanism
Pipes and FIFOs

e Creating and using pipes

e FIFOs

e Connecting filters with pipes

Sockets: Introduction

e Socket types and domains
e Creating and binding a socket
(socket() and bind())

B8 training@man7.org

19.

20.

21.

22.

23.

24.

25.

26.

Overview of stream sockets
listen() and pending connections
accept() and connect()

1/O on stream sockets

Overview of datagram sockets
I/O on datagram sockets

Internet Domain Sockets

Internet domain sockets
Data-representation issues
Presentation-format addresses
Loopback and wildcard addresses
Internet domain stream sockets
example

Internet Domain Sockets: Address
Conversion

e Host addresses and port numbers

e Host and service conversion

e Internet domain sockets example
with getaddrinfo()

Sockets: Further Details

e Socket shutdown (shutdown())

e Socket options

e TCP TIME-WAIT state and
SO_REUSEADDR

UNIX Domain Sockets

e UNIX domain stream sockets

e UNIX domain datagram sockets

e Further details of UNIX domain
sockets

Alternative 1/0 Models

Nonblocking 1/0
Signal-driven /0O

I/O multiplexing: poll()
Event-loop programming
Alternative 1/0 Models: epoll

e Problems with poll() and select()

e The epoll API

e Creating an epoll instance:
epoll_create()

e Populating the interest list:

epoll _ctl()

epoll events

Waiting for events: epoll _wait()

Performance considerations

Edge-triggered notification

e epoll API quirks

POSIX Semaphores

e Named semaphores
e Semaphore operations
e Unnamed semaphores

POSIX Shared Memory

e Creating and opening shared
memory objects

e Using shared memory objects

e Synchronizing access to shared
memory

(v2026-01-05 #aac6dles) Page 2


http://man7.org/training/

	Audience and prerequisites
	Related courses
	Course duration and format
	Course materials
	Course inquiries and bookings
	Prices, dates, and further details
	toAbout the trainer

