
man7.org
Training and Consulting

Linux/UNIX System Programming
Course code: M7D-LUSP01

This course provides a deep understanding of the operating system architecture
and low-level interfaces required to build system-level applications on Linux and
UNIX systems ranging from embedded processors to enterprise servers. Detailed
presentations coupled with many carefully designed practical exercises provide
participants with the knowledge needed to write complex system, network, and
multithreaded applications. The course dives into many specifics of the Linux
system, but makes frequent reference to the POSIX standard, so that it is also
valuable to developers working on other UNIX systems.

Audience and prerequisites
The audience for this course includes programmers devel-
oping and porting system-level and network applications for
Linux and UNIX systems, embedded application developers,
security engineers, site reliability engineers, and DevOps en-
gineers. To get the most out of the course, participants
should have:

• Good reading knowledge of the C programming language
• Solid programming experience in a language suitable for

completing the course exercises (e.g., C, C++, D, Go,
Rust, or Python)

• Knowledge of basic UNIX/Linux shell commands

No previous system programming experience is required.

Related courses
This course is also available as separate smaller pieces:

• System Programming Fundamentals, M7D-SPINTRO01

• Threads and IPC Programming, M7D-TIPC01

Course duration and format
Five days, with up to 40% devoted to practical sessions.

Course materials
• Course books (written by the trainer) that include all slides

and exercises presented in the course
• A copy of the trainer’s book, The Linux Programming

Interface
• Numerous example programs written by the course trainer

Course inquiries and bookings
For inquiries about courses and consulting, you can contact
us in the following ways:

• Email: training@man7.org
• Phone: +49 (89) 2488 6180 (German landline)

Prices, dates, and further details
For course prices, upcoming course dates, and further infor-
mation about the course, please visit the course web page,
http://man7.org/training/lusp/.

About the trainer

Michael Kerrisk has a unique set of qualifications
and experience that ensure that course partici-
pants receive training of a very high standard:

• He has been programming on UNIX systems
since 1987 and began teaching UNIX system
programming courses in 1989.

• He is the author of The Linux Programming
Interface, a 1550-page book acclaimed as the
definitive work on Linux system programming.

• He has been actively involved in Linux de-
velopment, working with kernel developers
on testing, review, and design of new Linux
kernel–user-space APIs.

• Since 2000, he has been the involved in the
Linux man-pages project, which provides the
manual pages documenting Linux system calls
and C library APIs, and was the project main-
tainer from 2004 to 2021.

http://man7.org/training/ k training@man7.org (v2026-01-05 #aac6d1e5) Page 1

http://man7.org/training/lusp/
http://man7.org/training/


Linux/UNIX System Programming: course contents in detail

Topics marked with an asterisk (*) are optional, and will be covered as time permits

1. Course Introduction
2. Fundamental Concepts

• System calls and library functions
• Error handling
• System data types
• Notes on code examples

3. File I/O

• File I/O overview
• open(), read(), write(), and

close()

4. File I/O Buffering

• Kernel buffering
• User-space (stdio) buffering
• Controlling kernel buffering

5. File I/O: Further Details

• The file offset and lseek()
• Atomicity
• Relationship between file

descriptors and open files
• Duplicating file descriptors
• File status flags (and fcntl())
• Other file I/O interfaces (*)

6. Files

• Inodes
• Retrieving file information: stat()
• File mode
• Changing file attributes

7. Directories and Links (*)

• Directories and (hard) links
• Symbolic links
• Hard links: system calls and

library functions
• Symbolic links: system calls and

library functions
• Current working directory
• Operating relative to a directory

(openat() etc.)
• Scanning directories

8. Processes

• Process IDs
• Process memory layout
• Command-line arguments
• The environment list
• Process credentials
• Process groups and sessions (*)
• Nonlocal gotos

9. Signals

• Overview of signals
• Signal dispositions
• Useful signal-related functions
• Signal handlers
• Signal sets, the signal mask, and

pending signals
• Designing signal handlers

10. Signals: Signal Handlers
• Async-signal-safe functions
• Interrupted system calls
• SA_SIGINFO signal handlers
• The signal trampoline (*)

11. Process Creation and Termination
• Creating a new process: fork()
• File descriptors and fork()
• Process termination
• Monitoring child processes
• Orphans and zombies
• The SIGCHLD signal
• PID file descriptors

12. Executing Programs
• Executing programs: execve()
• The exec() library functions
• File descriptors and exec()
• Process attributes during fork()

and exec()
13. System Call Tracing with strace (*)

• Getting started
• Tracing child processes
• Filtering strace output

14. Threads: Introduction
• Overview of threads
• Pthreads API basics
• Thread creation and termination
• Thread IDs
• Joining and detaching threads
• Thread attributes
• Signals and threads
• Threads and process control

15. Threads: Synchronization
• Shared resources and critical

sections
• Mutexes
• Locking and unlocking a mutex
• Condition variables
• Signaling and waiting on condition

variables
• Further details on signaling

condition variables
• Dynamically initialized

synchronization primitives
• Other synchronization primitives

16. IPC: Introduction and Overview (*)
• Categorizing IPC
• Choosing an IPC mechanism

17. Pipes and FIFOs
• Creating and using pipes
• FIFOs
• Connecting filters with pipes

18. Sockets: Introduction
• Socket types and domains
• Creating and binding a socket

(socket() and bind())

• Overview of stream sockets
• listen() and pending connections
• accept() and connect()
• I/O on stream sockets
• Overview of datagram sockets
• I/O on datagram sockets

19. Internet Domain Sockets
• Internet domain sockets
• Data-representation issues
• Presentation-format addresses
• Loopback and wildcard addresses
• Internet domain stream sockets

example
20. Internet Domain Sockets: Address

Conversion
• Host addresses and port numbers
• Host and service conversion
• Internet domain sockets example

with getaddrinfo()
21. Sockets: Further Details

• Socket shutdown (shutdown())
• Socket options
• TCP TIME-WAIT state and

SO_REUSEADDR

22. UNIX Domain Sockets
• UNIX domain stream sockets
• UNIX domain datagram sockets
• Further details of UNIX domain

sockets
23. Alternative I/O Models

• Nonblocking I/O
• Signal-driven I/O
• I/O multiplexing: poll()
• Event-loop programming

24. Alternative I/O Models: epoll
• Problems with poll() and select()
• The epoll API
• Creating an epoll instance:

epoll_create()
• Populating the interest list:

epoll_ctl()
• epoll events
• Waiting for events: epoll_wait()
• Performance considerations
• Edge-triggered notification
• epoll API quirks

25. POSIX Semaphores
• Named semaphores
• Semaphore operations
• Unnamed semaphores

26. POSIX Shared Memory
• Creating and opening shared

memory objects
• Using shared memory objects
• Synchronizing access to shared

memory

http://man7.org/training/ k training@man7.org (v2026-01-05 #aac6d1e5) Page 2

http://man7.org/training/

	Audience and prerequisites
	Related courses
	Course duration and format
	Course materials
	Course inquiries and bookings
	Prices, dates, and further details
	toAbout the trainer

