
man7.org
Training and Consulting

Linux/UNIX IPC Programming
Course code: M7D-IPC02

This three-day course provides a thorough introduction to the inter-
process (IPC) techniques that Linux and UNIX systems provide for
use by user-space programs. Using these features allows the creation
of complex multiprocess applications that coordinate their actions
and exchange information with each other. Detailed presentations
coupled with many carefully designed practical exercises provide par-
ticipants with the knowledge to write such applications.

Audience and prerequisites
The audience for this course includes programmers devel-
oping and porting system-level and network applications for
Linux and UNIX systems, embedded application developers,
security engineers, site reliability engineers, and DevOps en-
gineers.

To get the most out of the course, participants should
have:

• Good reading knowledge of the C programming language
• Solid programming experience in a language suitable for

completing the course exercises (e.g., C, C++, Go, Rust,
or Python)

• Knowledge of basic UNIX/Linux shell commands
• Working knowledge of the fundamental system program-

ming topics including file I/O using system calls, signals
and process lifecycle (fork(), exec(), wait()). Such knowl-
edge can be obtained in either the Linux System Program-
ming Fundamentals (M7D-SPINTRO01) or the Linux Sys-
tem Programming Essentials (M7D-SPESSO01) course.

Course duration and format
Three days, with up to 40% devoted to practical sessions.

Course materials
• Course books (written by the trainer) that include all slides

and exercises presented in the course
• An electronic copy of the trainer’s book, The Linux Pro-

gramming Interface
• Numerous example programs written by the course trainer

Course inquiries and bookings
For inquiries about courses and consulting, you can contact
us in the following ways:

• Email: training@man7.org
• Phone: +49 (89) 2488 6180 (German landline)

Prices and further details
For course prices and further information, please visit
the course web page, http://man7.org/training/ipc_
prog/.

About the trainer

Michael Kerrisk has a unique set of qualifications
and experience that ensure that course partici-
pants receive training of a very high standard:

• He has been programming on UNIX systems
since 1987 and began teaching UNIX system
programming courses in 1989.

• He is the author of The Linux Programming
Interface, a 1550-page book acclaimed as the
definitive work on Linux system programming.

• He has been actively involved in Linux de-
velopment, working with kernel developers
on testing, review, and design of new Linux
kernel–user-space APIs.

• Since 2000, he has been the involved in the
Linux man-pages project, which provides the
manual pages documenting Linux system calls
and C library APIs, and was the project main-
tainer from 2004 to 2021.

http://man7.org/training/ k training@man7.org (v2026-01-05 #aac6d1e5) Page 1

http://man7.org/training/ipc_prog/
http://man7.org/training/ipc_prog/
http://man7.org/training/


Linux/UNIX IPC Programming: course contents in detail

Topics marked with an asterisk (*) are optional, and will be covered on an as-needed basis and/or as time permits

1. Course Introduction
2. IPC: Introduction and Overview

• Categorizing IPC
• Choosing an IPC mechanism

3. Fundamentals

• Error handling
• Notes on code examples

4. Pipes and FIFOs

• Preamble: file descriptors and file descriptor
duplication

• Creating and using pipes
• FIFOs
• Connecting filters with pipes

5. Sockets: Introduction

• Socket types and domains
• Creating and binding a socket (socket() and bind())
• Overview of stream sockets
• listen() and pending connections
• accept() and connect()
• I/O on stream sockets
• Overview of datagram sockets
• I/O on datagram sockets

6. Internet Domain Sockets

• Internet domain sockets
• Data-representation issues
• Presentation-format addresses
• Loopback and wildcard addresses
• Internet domain stream sockets example

7. Internet Domain Sockets: Address Conversion

• Host addresses and port numbers
• Host and service conversion
• Internet domain sockets example with getaddrinfo()

8. Sockets: Further Details

• Socket shutdown (shutdown())
• Socket options
• TCP TIME-WAIT state and SO_REUSEADDR

9. UNIX Domain Sockets

• UNIX domain stream sockets
• UNIX domain datagram sockets
• Further details of UNIX domain sockets

10. UNIX Domain Sockets: Ancillary Data (*)

• Ancillary message types
• sendmsg(), recvmsg(), and struct msghdr
• struct msghdr in more detail
• Ancillary data and struct cmsghdr

• Example: passing a file descriptor over a socket

11. Alternative I/O Models

• Nonblocking I/O
• Signal-driven I/O
• I/O multiplexing: poll()
• Event-loop programming

12. Alternative I/O Models: epoll

• Problems with poll() and select()
• The epoll API
• Creating an epoll instance: epoll_create()
• Populating the interest list: epoll_ctl()
• epoll events
• Waiting for events: epoll_wait()
• Performance considerations
• Edge-triggered notification
• epoll API quirks

13. eventfd

• Overview of eventfd
• eventfd operations
• Semaphore semantics for eventfd

14. POSIX IPC
15. POSIX Semaphores

• Overview
• Named semaphores
• Semaphore operations
• Unnamed semaphores

16. POSIX Shared Memory

• Creating and opening shared memory objects
• Using shared memory objects
• Synchronizing access to shared memory

17. POSIX Message Queues

• Overview
• Opening, closing, and unlinking a message queue
• Message queue attributes
• Sending and receiving messages
• The mqueue filesystem
• Message queue limits and defaults
• Message notification (*)
• Message notification via a signal (*)
• Message notification via a thread (*)

18. Other IPC methods (*)

• Pseudoterminals
• File locks
• Cross-memory attach
• Shared file mappings

http://man7.org/training/ k training@man7.org (v2026-01-05 #aac6d1e5) Page 2

http://man7.org/training/

	Audience and prerequisites
	Course duration and format
	Course materials
	Course inquiries and bookings
	Prices and further details
	toAbout the trainer

