
System Programming for Linux Containers

User Namespaces and
Capabilities

Michael Kerrisk, man7.org © 2026

mtk@man7.org

January 2026

Outline Rev: # d49d0b54be95

22 User Namespaces and Capabilities 22-1
22.1 User namespaces and capabilities 22-3
22.2 User namespaces and capabilities: example 22-8
22.3 Exercises 22-21
22.4 What does it mean to be superuser in a namespace? 22-25
22.5 Discovering namespace relationships 22-34
22.6 Homework exercises 22-44
22.7 File-related capabilities 22-46
22.8 Exercises 22-53

Outline
22 User Namespaces and Capabilities 22-1
22.1 User namespaces and capabilities 22-3
22.2 User namespaces and capabilities: example 22-8
22.3 Exercises 22-21
22.4 What does it mean to be superuser in a namespace? 22-25
22.5 Discovering namespace relationships 22-34
22.6 Homework exercises 22-44
22.7 File-related capabilities 22-46
22.8 Exercises 22-53

What are the rules that determine
the capabilities that a process

has in a given user namespace?

System Programming·Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-4 §22.1

User namespace hierarchies

User NSs exist in a hierarchy
Each user NS has a parent, going back to initial user NS

Parental relationship is established when user NS is created:
clone() : parent of new user NS is NS of caller of clone()
unshare() : parent of new user NS is caller’s previous NS

Parental relationship is significant because it plays a part in
determining capabilities a process has in user NS

System Programming·Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-5 §22.1

User namespaces and capabilities

Whether a process has an effective capability inside a
“target” user NS depends on several factors:

Whether the capability is present in process’s effective set
Which user NS the process is a member of
The process’s effective UID
The effective UID of process that created target user NS
The parental relationship between process’s user NS and
target user NS

See also namespaces/ns_capable.c
(A program that encapsulates the rules described next)

System Programming·Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-6 §22.1

Capability rules for user namespaces

1 A process has a capability in a user NS if:
it is a member of the user NS, and
capability is present in its effective set
Note: this rule doesn’t grant that capability in parent NS

2 A process that has a capability in a user NS has the
capability in all descendant user NSs as well

I.e., members of user NS are not isolated from effects of
privileged process in parent/ancestor user NS

3 A process in a parent user NS that has same eUID as
eUID of creator of child user NS has all capabilities in
that child NS

At creation time, kernel records eUID of creator as
“owner” of user NS
By virtue of previous rule, process also has capabilities in all
descendant user NSs

System Programming·Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-7 §22.1

Outline
22 User Namespaces and Capabilities 22-1
22.1 User namespaces and capabilities 22-3
22.2 User namespaces and capabilities: example 22-8
22.3 Exercises 22-21
22.4 What does it mean to be superuser in a namespace? 22-25
22.5 Discovering namespace relationships 22-34
22.6 Homework exercises 22-44
22.7 File-related capabilities 22-46
22.8 Exercises 22-53

Demonstration of capability rules

Set up following scenario; then both userns_setns_test
processes will try to join Child namespace 1 using setns()

bash

unshare –Ur

bash

bash

userns_setns_test
(parent)

userns_setns_test
(child)

Parent namespace
(initial namespace)

Child namespace 1
Child namespace 2

fork() fork()

unshare(CLONE_NEWUSER)
execve() clone(CLONE_NEWUSER)

System Programming·Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-9 §22.2

namespaces/userns_setns_test.c

./userns_setns_test /proc/PID/ns/user

Creates a child process in a new user NS
Parent and child then both call setns() to attempt to join
user NS identified by argument

setns() requires CAP_SYS_ADMIN capability in target NS

System Programming·Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-10 §22.2

namespaces/userns_setns_test.c

int main(int argc, char *argv[]) {
...
long fd = open(argv[1], O_RDONLY);

pid_t child_pid = clone(childFunc, stack + STACK_SIZE,
CLONE_NEWUSER | SIGCHLD, (void *) fd);

test_setns("parent: ", fd);
printf("\n");

waitpid(child_pid, NULL, 0);
exit(EXIT_SUCCESS);

}

Open /proc/PID/ns/user file specified on command line
Create child in new user NS

childFunc() receives file descriptor as argument
Try to join user NS referred to by fd (test_setns())
Wait for child to terminate

System Programming·Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-11 §22.2

namespaces/userns_setns_test.c

static int childFunc(void *arg) {
long fd = (long) arg;

usleep(100000);
test_setns("child: ", fd);
return 0;

}

Child sleeps briefly, to allow parent’s output to appear first
Child attempts to join user NS referred to by fd

System Programming·Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-12 §22.2

namespaces/userns_setns_test.c

static void display_symlink(char *pname, char *link) {
char target[PATH_MAX];
ssize_t s = readlink(link, target, PATH_MAX);
printf("%s%s ==> %.*s\n", pname, link, (int) s, target);

}

static void test_setns(char *pname, int fd) {
display_symlink(pname, "/proc/self/ns/user");
display_creds_and_caps(pname);
if (setns(fd, CLONE_NEWUSER) == -1) {

printf("%s setns() failed: %s\n", pname, strerror(errno));
} else {

printf("%s setns() succeeded\n", pname);
display_symlink(pname, "/proc/self/ns/user");
display_creds_and_caps(pname);

}
}

Display caller’s user NS symlink, credentials, and capabilities
Try to setns() into user NS referred to by fd
On success, again display user NS symlink, credentials, and
capabilities

System Programming·Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-13 §22.2

namespaces/userns_functions.c

1 static void display_creds_and_caps(char *msg) {
2 printf("%seUID = %ld; eGID = %ld; ", msg,
3 (long) geteuid(), (long) getegid());
4
5 cap_t caps = cap_get_proc();
6 char *s = cap_to_text(caps, NULL)
7 printf("capabilities: %s\n", s);
8
9 cap_free(caps);

10 cap_free(s);
11 }

Display caller’s credentials and capabilities
(Different source file)

System Programming·Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-14 §22.2

namespaces/userns_setns_test.c

In a terminal in initial user NS, we run the following commands:
$ id -u
1000
$ readlink /proc/$$/ns/user
user:[4026531837]
$ PS1='sh2# ' unshare -Ur bash
sh2# echo $$
30623
sh2# id -u
0
sh2# readlink /proc/$$/ns/user
user:[4026532638]

Show UID and user NS for initial shell
Start a new shell in a new user NS

Show PID of new shell
Show UID and user NS of new shell

System Programming·Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-15 §22.2

namespaces/userns_setns_test.c

$./userns_setns_test /proc/30623/ns/user
parent: readlink("/proc/self/ns/user") ==> user:[4026531837]
parent: eUID = 1000; eGID = 1000; capabilities: =
parent: setns() succeeded
parent: eUID = 0; eGID = 0; capabilities: =ep

child: readlink("/proc/self/ns/user") ==> user:[4026532639]
child: eUID = 65534; eGID = 65534; capabilities: =ep
child: setns() failed: Operation not permitted

In a second terminal window, we run our setns() test program:
Results of readlink() calls show:

Parent userns_setns_test process is in initial user NS
Child userns_setns_test is in another user NS

setns() in parent succeeded, and parent gained full
capabilities as it moved into the user NS
setns() in child fails; child has no capabilities in target NS

System Programming·Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-16 §22.2

namespaces/userns_setns_test.c

$./userns_setns_test /proc/30623/ns/user
parent: readlink("/proc/self/ns/user") ==>

user:[4026531837]
parent: setns() succeeded
parent: eUID = 0; eGID = 0; capabilities: =ep

child: readlink("/proc/self/ns/user") ==>
user:[4026532639]

child: setns() failed: Operation not permitted

setns() in child failed:
Rule 3: “processes in parent user NS that have same eUID
as creator of user NS have all capabilities in the NS”
Parent userns_setns_test process was in parent user NS
of target user NS and so had CAP_SYS_ADMIN
Child userns_setns_test process was in sibling user NS
and so had no capabilities in target user NS

System Programming·Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-17 §22.2

Quiz (who can signal a process in a child user NS?)

Process B
UID = 1001, caps: =

Process A
UID = 1000, caps: =

Process X
UID = 0, caps: =ep

Process C
UID = 5, caps: =ep

Process D
UID = 6, caps: =

Initial user NS

Child user NS
uid_map: 5 1000 10

creator UID = 1000 “Is user NS
parent of”

Child user NS was created by a process with UID 1000
That process (which presumably was not A) had capabilities that
allowed it to create a user NS with UID map with length > 1

Process X has all capabilities in initial user NS
Assume process A and process B have no capabilities in initial user NS
Assume C was first process in child NS and has all capabilities in NS
Process D has no capabilities

System Programming·Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-18 §22.2

Quiz (who can signal a process in a child user NS?)

Process B
UID = 1001, caps: =

Process A
UID = 1000, caps: =

Process X
UID = 0, caps: =ep

Process C
UID = 5, caps: =ep

Process D
UID = 6, caps: =

Initial user NS

Child user NS
uid_map: 5 1000 10

creator UID = 1000 “Is user NS
parent of”

Sending a signal requires UID match or CAP_KILL capability
To which of B, C, D can process A send a signal?
Can B send a signal to D? Can D send a signal to B?
Can process X send a signal to processes C and D?
Can process C send a signal to A? To B?
Can C send a signal to D?

System Programming·Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-19 §22.2

Quiz (who can signal a process in a child user NS?)

Process B
UID = 1001, caps: =

Process A
UID = 1000, caps: =

Process X
UID = 0, caps: =ep

Process C
UID = 5, caps: =ep

Process D
UID = 6, caps: =

Initial user NS

Child user NS
uid_map: 5 1000 10

creator UID = 1000 “Is user NS
parent of”

A can’t signal B, but can signal C (matching credentials) and D
(because A has capabilities in D’s NS)
B can signal D (matching credentials); likewise, D can signal B
X can signal C and D (because it has capabilities in parent user NS)
C can signal A (credential match), but not B
C can signal D, because it has capabilities in its NS

System Programming·Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-20 §22.2

Outline
22 User Namespaces and Capabilities 22-1
22.1 User namespaces and capabilities 22-3
22.2 User namespaces and capabilities: example 22-8
22.3 Exercises 22-21
22.4 What does it mean to be superuser in a namespace? 22-25
22.5 Discovering namespace relationships 22-34
22.6 Homework exercises 22-44
22.7 File-related capabilities 22-46
22.8 Exercises 22-53

Exercises

1 Perform the following steps:
a [Ubuntu only] If you are using Ubuntu 24.04 or later, you may need to disable

an AppArmor setting that disables the creation of user namespaces by
unprivileged users. First, check whether the setting is already turned off (0),
using the following command:

$ sudo sysctl kernel.apparmor_restrict_unprivileged_userns

If the setting is not off (0), you can turn it off using the following command:

$ sudo sysctl -w kernel.apparmor_restrict_unprivileged_userns=0

b As an unprivileged user, start two sleep processes, one as the unprivileged user
and the other as UID 0:

$ id -u
1000
$ sleep 1000 &
$ sudo sleep 2000

c As superuser, in another terminal window use unshare to create a user
namespace with root mappings and run a shell in that namespace:

$ SUDO_PS1="ns2# " sudo unshare -U -r bash --norc

System Programming·Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-22 §22.3

Exercises

(Root mappings == process’s UID and GID in parent NS map to 0 in
child NS)
Setting the SUDO_PS1 environment variable causes sudo(8) to set the PS1
environment variable for the command that it executes. (PS1 defines the
prompt displayed by the shell.) The bash --norc option prevents the
execution of shell start-up scripts that might change PS1.

d Verify that the shell has a full set of capabilities and a UID map “0 0 1” (i.e.,
UID 0 in the parent namespace maps to UID 0 in the child user namespace):

ns2# grep -E 'Cap(Prm|Eff)' /proc/$$/status # Or: getpcaps $$
ns2# cat /proc/$$/uid_map

e From this shell, try to kill each of the sleep processes started above:

ns2# ps -o 'pid uid cmd' -C sleep # Discover 'sleep' PIDs
...
ns2# kill -9 <PID-1>
ns2# kill -9 <PID-2>

Which of the kill commands succeeds? Why?

System Programming·Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-23 §22.3

Exercises

2 U U U Write a program to set up two processes in a child user namespace as in the
scenario shown in slide 22-20. [template: namespaces/ex.userns_cap_sig_expt.c]

After compiling the program, assign capabilities to the executable as follows:

sudo setcap cap_setuid,cap_setgid=pe <program-file>

While running the program, try sending signals to processes “C” and “D” from
a shell in the initial user namespace, in order to verify the answers given on
slide 22-20.

System Programming·Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-24 §22.3

Outline
22 User Namespaces and Capabilities 22-1
22.1 User namespaces and capabilities 22-3
22.2 User namespaces and capabilities: example 22-8
22.3 Exercises 22-21
22.4 What does it mean to be superuser in a namespace? 22-25
22.5 Discovering namespace relationships 22-34
22.6 Homework exercises 22-44
22.7 File-related capabilities 22-46
22.8 Exercises 22-53

User namespaces and capabilities

Kernel grants initial process in new user NS a full set of
capabilities
But, those capabilities are available only for operations on
objects governed by the new user NS

System Programming·Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-26 §22.4

User namespaces and capabilities

Kernel associates each non-user NS instance with a
specific user NS instance

Each non-user NS is “owned” by a user NS
When creating a new non-user NS, user NS of the creating
process becomes the owner of the new NS

Suppose a process operates on global resources governed by
a (non-user) NS:

Privilege checks are done according to process’s capabilities
in user NS that owns the NS

⇒ User NSs can deliver full capabilities inside a user NS
without allowing capabilities in outer user NS(s)

(Barring kernel bugs)

System Programming·Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-27 §22.4

User namespaces and capabilities–an example

Initial user namespace

creator eUID: 0

Initial network

namespace

Child user namespace

creator eUID: 1000

is ow
ned byis

ch
ild

 o
f

Initial UTS

namespace

is owned by

Second UTS

namespace

is owned by

Process X

eUID inside NS: 0

eUID in outer NS: 1000

capabilities: =ep

ismember of
is

member o
f

is member of

Example scenario; X was created with: unshare -Ur -u <prog>
X is in a new user NS, created with root mappings
X is in a new UTS NS, which is owned by new user NS
X is in initial instance of all other NS types (e.g., network NS)

System Programming·Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-28 §22.4

User namespaces and capabilities–an example

Initial user namespace

creator eUID: 0

Initial network

namespace

Child user namespace

creator eUID: 1000

is ow
ned byis

ch
ild

 o
f

Initial UTS

namespace

is owned by

Second UTS

namespace

is owned by

Process X

eUID inside NS: 0

eUID in outer NS: 1000

capabilities: =ep

ismember of
is

member o
f

is member of

Suppose X tries to change host name (CAP_SYS_ADMIN)
E.g., hostname bienne

X is in second UTS NS
Privileges checked according to X’s capabilities in user NS that owns
that UTS NS ⇒ succeeds (X has capabilities in user NS)

System Programming·Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-29 §22.4

User namespaces and capabilities–an example

Initial user namespace

creator eUID: 0

Initial network

namespace

Child user namespace

creator eUID: 1000

is ow
ned byis

ch
ild

 o
f

Initial UTS

namespace

is owned by

Second UTS

namespace

is owned by

Process X

eUID inside NS: 0

eUID in outer NS: 1000

capabilities: =ep

ismember of
is

member o
f

is member of

Suppose X tries to bring network device up/down (CAP_NET_ADMIN)
E.g., ip link set dev lo down

X is in initial network NS
Privileges checked according to X’s capabilities in user NS that owns
network NS ⇒ attempt fails (no capabilities in initial user NS)

System Programming·Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-30 §22.4

Containers and namespaces
Initial

user NS

Initial
UTS NS

Child
user NS

Initial
PID NS

Initial
mnt NS

Initial
NW NS

UTS NS
(hostname)

PID NS mnt NS
(mnt list)

NW NS
(NW infra.)

init process
(PID 1)

caps: =ep
Container

is child of
(a user NS)

is owned by

(a user NS)

is member of
(a NS)

Not all
NSs are
shown

“Superuser” process in a container has root power over resources
governed by non-user NSs owned by container’s user NS
And does not have privilege in outside user NS

(E.g., can’t change mounts seen by processes outside container)

System Programming·Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-31 §22.4

Demo: effect of capabilities in a user NS

Create a shell in new user and UTS NSs:
$ unshare -Ur -u bash
getpcaps $$
929: =ep # Shell has all capabilities in its user NS

Since this shell has all capabilities in user NS that owns its
UTS NS, we can change hostname:
hostname
bienne
hostname langwied
hostname
langwied

But, this shell is in a network NS owned by initial user NS,
and so can’t turn a NW device down:
ip link set dev lo down
RTNETLINK answers: Operation not permitted

System Programming·Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-32 §22.4

What about resources not governed by namespaces?

Some privileged operations relate to resources/features not
(yet) governed by any namespace

E.g., load kernel modules, raise process nice values
Having all capabilities in a (noninitial) user NS doesn’t grant
power to perform operations on features not currently
governed by any NS

E.g., load/unload kernel modules, raise process nice values
IOW: to perform these operations, process must have the
relevant capability in the initial user NS

System Programming·Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-33 §22.4

Outline
22 User Namespaces and Capabilities 22-1
22.1 User namespaces and capabilities 22-3
22.2 User namespaces and capabilities: example 22-8
22.3 Exercises 22-21
22.4 What does it mean to be superuser in a namespace? 22-25
22.5 Discovering namespace relationships 22-34
22.6 Homework exercises 22-44
22.7 File-related capabilities 22-46
22.8 Exercises 22-53

Discovering namespace relationships

To know whether a process has a capability in a NS, we need
to know how NSs are related to each other

Which user NS owns a nonuser NS?
What is hierarchical relationship of user NSs?
Which NS is each process a member of?

We can discover this info using ioctl() operations and
/proc/PID/ns/* symlinks
Info can be used to build visualization tools for NSs

An example: namespaces/namespaces_of.go
A better example: https://github.com/TheDiveO/lxkns

System Programming·Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-35 §22.5

ioctl() operations for namespaces

#include <sys/ioctl.h>
int ioctl(int fd, unsigned long request, ...);

There are many ioctl() operations...
Certain ioctl() operations can be applied to a file descriptor
(FD) that refers to a NS

E.g., FD obtained by opening /proc/PID/ns/* file
Details in ioctl_ns(2)

Some of those operations return a (new) FD that refers to
another NS

To determine which NS, we use stat()/fstat()

System Programming·Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-36 §22.5

https://github.com/TheDiveO/lxkns

stat() and fstat()

#include <sys/stat.h>
int stat(const char *pathname, struct stat *statbuf);
int fstat(int fd, struct stat *statbuf);

The “stat” system calls return metadata from a file inode
Metadata is returned via struct stat, which includes fields:

st_dev : device ID
st_ino : inode number
Device ID + inode # form unique identifier for NS

System Programming·Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-37 §22.5

Comparing namespace identifiers

To discover NS that a file descriptor refers to, we compare
with /proc/PID/ns/* symlinks:
int fd = ioctl(...);

struct stat sb1, sb2;
fstat(fd, &sb1);
stat(path, &sb2); // 'path' is a /proc/PID/ns/* symlink

if (sb1.st_dev == sb2.st_dev && sb1.st_ino == sb2.st_ino) {
// 'fd' and 'path' refer to same NS

}

System Programming·Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-38 §22.5

ioctl() operations for namespaces

NS_GET_USERNS: return FD referring to owning user NS for
NS referred to by fd

Returned FD can be compared (fstat(), stat()) with
/proc/PID/ns/user files to discover owning user NS

NS_GET_PARENT: return FD referring to the parent
namespace of NS referred to by fd

Valid only for hierarchical namespaces (PID, user)
Returned FD can be compared (fstat(), stat()) with
/proc/PID/ns/{pid,user} files to discover parent NS
Synonymous with NS_GET_USERNS for user namespaces

System Programming·Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-39 §22.5

ioctl() operations for namespaces

NS_GET_OWNER_UID: return UID of creator of user NS
referred to by fd
NS_GET_NSTYPE: return the type of NS referred to by fd

Returns one of CLONE_NEW* constants
Example code:

namespaces/ns_capable.c
namespaces/namespaces_of.go
namespaces/pid_namespaces.go
ioctl_ns(2)
http://blog.man7.org/2016/12/

introspecting-namespace-relationships.html

System Programming·Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-40 §22.5

http://blog.man7.org/2016/12/introspecting-namespace-relationships.html
http://blog.man7.org/2016/12/introspecting-namespace-relationships.html

namespaces/namespaces_of.go example

namespaces/namespaces_of.go shows NS memberships of
specified processes, in context of user NS hierarchy
To demo, we set up scenario shown in earlier diagram:
$ echo $$ # PID of a shell in initial user NS
327
$ unshare -Ur -u sh # Create new user and UTS NSs
echo $$ # PID of shell in new NSs
353

Run a shell in new user and UTS NSs
That shell will be a member of initial instance of other NSs

System Programming·Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-41 §22.5

Discovering namespace relationships

Inspect with namespaces/namespaces_of.go program:
$ go run namespaces_of.go --namespaces=net,uts 327 353
user {4 4026531837} <UID: 0>

[327]
net {4 4026532008}

[327 353]
uts {4 4026531838}

[327]
user {4 4026532760} <UID: 1000>

[353]
uts {4 4026532761}

[353]

Indentation indicates user NS ownership / parental
relationship between user NSs
Shells are in same network NS, but different UTS NSs
Second UTS NS is owned by second user NS
NS IDs ({...}) include device ID (4) from (hidden) NS
filesystem

System Programming·Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-42 §22.5

lsns(8)

Recent versions of lsns(8) can also be used to show NS
relationships (util-linux v2.38, 2021)
$ lsns -o 'ns,type,pid' -t user -t net -t uts --tree=owner -p 353
NS TYPE PID
4026531837 user 327

4026532008 net 327
4026532760 user 353

4026532761 uts 353

But, more limited than namespaces_of.go and lxkns
Can show info only about all NSs, or NSs of a single process
“PID” is lowest PID number in NS (which might not be first
process in a new NS)
Can’t list all PIDs that are members of NS

Can list NSs that have no member processes but are pinned
by bind mounts using: lsns --persistent

System Programming·Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-43 §22.5

Outline
22 User Namespaces and Capabilities 22-1
22.1 User namespaces and capabilities 22-3
22.2 User namespaces and capabilities: example 22-8
22.3 Exercises 22-21
22.4 What does it mean to be superuser in a namespace? 22-25
22.5 Discovering namespace relationships 22-34
22.6 Homework exercises 22-44
22.7 File-related capabilities 22-46
22.8 Exercises 22-53

