System Programming for Linux Containers

User Namespaces and
Capabilities

Michael Kerrisk, man7.org © 2026

mtk@man7.org

January 2026

Outline
22 User Namespaces and Capabilities 22-1
22.1 User namespaces and capabilities 22-3
22.2 User namespaces and capabilities: example 22-8
22.3 Exercises 22-21
22.4 What does it mean to be superuser in a namespace? 22-25
22.5 Discovering namespace relationships 22-34
22.6 Homework exercises 22-44
22.7 File-related capabilities 22-46

22.8 Exercises 22-53

Outline

22 User Namespaces and Capabilities 22-1
22.1 User namespaces and capabilities 22-3

What are the rules that determine
the capabilities that a process
has in a given user namespace?

System Programming - Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-4 §22.1

User namespace hierarchies

@ User NSs exist in a hierarchy
e Each user NS has a parent, going back to initial user NS

@ Parental relationship is established when user NS is created:

o clone(): parent of new user NS is NS of caller of clone()
o unshare(): parent of new user NS is caller’s previous NS

@ Parental relationship is significant because it plays a part in
determining capabilities a process has in user NS

System Programming - Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-5 §22.1

User namespaces and capabilities

@ Whether a process has an effective capability inside a
“target” user NS depends on several factors:

Whether the capability is present in process’s effective set

Which user NS the process is a member of

The process's effective UID

The effective UID of process that created target user NS

The parental relationship between process’'s user NS and
target user NS

@ See also namespaces/ns_capable.c
o (A program that encapsulates the rules described next)

.org

System Programming - Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-6 §22.1

Capability rules for user namespaces

© A process has a capability in a user NS if:

e it is a member of the user NS, and

e capability is present in its effective set

e Note: this rule doesn't grant that capability in parent NS
© A process that has a capability in a user NS has the

capability in all descendant user NSs as well
e l.e., members of user NS are not isolated from effects of
privileged process in parent/ancestor user NS

© A process in a parent user NS that has same eUID as
eUID of creator of child user NS has all capabilities in
that child NS
e At creation time, kernel records eUID of creator as
“owner” of user NS

e By virtue of previous rule, process also has capabilities in all
descendant user NSs

System Programming - Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-7 §22.1
Outline
22 User Namespaces and Capabilities 22-1

22.2 User namespaces and capabilities: example 22-8

Demonstration of capability rules

Set up following scenario; then both userns setns test
processes will try to join Child namespace 1 using setns()

bash] Parent namespace [bash]
(initial namespace)

N\

fork() fork()
Y Y
[unshare —Ur J userns_setns__test
(parent)

T J

unshare(CLONE_NEWUSER) :
execve() :

clone(CLONE_NEWUSER)

¥ ¥
[] userns__setns__test
(child)

Child namespace 1

Child namespace 2

.org

System Programming - Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-9 §22.2

namespaces/userns_setns _test.c

./userns_setns_test /proc/PID/ns/user

@ Creates a child process in a new user NS

@ Parent and child then both call setns() to attempt to join
user NS identified by argument

o setns() requires CAP_SYS_ADMIN capability in target NS

.org

System Programming - Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-10 §22.2

namespaces/userns_setns _test.c

int main(int argc, char *argv[]) {

long fd = open(argv[1], O_RDONLY);

pid t child pid = clone(childFunc, stack + STACK_SIZE,
CLONE_NEWUSER | SIGCHLD, (void *) fd);

test_setns("parent: ", £fd);

printf("\n");

waitpid(child_pid, NULL, 0);
exit (EXIT_SUCCESS) ;

@ Open /proc/PID/ns/user file specified on command line

@ Create child in new user NS

o childFunc() receives file descriptor as argument
@ Try to join user NS referred to by fd (test_setns())

@ Wait for child to terminate

.org

System Programming - Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-11 §22.2

namespaces/userns_setns _test.c

static int childFunc(void *arg) {
long fd = (long) arg;

usleep(100000) ;
test_setns("child: ", £4);
return O;

@ Child sleeps briefly, to allow parent’'s output to appear first

@ Child attempts to join user NS referred to by fd

.org

System Programming - Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-12 §22.2

namespaces/userns_setns _test.c

static void display_symlink(char *pname, char *1link) {
char target[PATH_MAX];
ssize_t s = readlink(link, target, PATH_MAX);
printf ("%s%s ==> %.*s\n", pname, link, (int) s, target);

}

static void test_setns(char *pname, int fd) {
display_symlink(pname, "/proc/self/ns/user");
display_creds_and_caps(pname) ;

if (setns(fd, CLONE_NEWUSER) == -1) {
printf ("%s setns() failed: %s\n", pname, strerror(errno));
} else {

printf("%s setns() succeeded\n", pname);
display_symlink(pname, "/proc/self/ns/user");
display_creds_and_caps(pname) ;

@ Display caller's user NS symlink, credentials, and capabilities
@ Try to setns() into user NS referred to by fd

@ On success, again display user NS symlink, credentials, and
capabilities

.org

System Programming - Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-13 §22.2

namespaces/userns_functions.c

1| static void display_creds_and_caps(char *msg) {
2 printf("%seUID = %1d; eGID = %ld; ", msg,
3 (long) geteuid(), (long) getegid();
4

5 cap_t caps = cap_get_proc(Q;

6 char *s = cap_to_text(caps, NULL)

7 printf ("capabilities: %s\n", s);

8

9 cap_free(caps);

10 cap_free(s);

11}

@ Display caller’s credentials and capabilities

o (Different source file)

.org

System Programming - Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-14 §22.2

namespaces/userns_setns _test.c

In a terminal in initial user NS, we run the following commands:

$ id -u

1000

$ readlink /proc/$$/ns/user
user: [4026531837]

$ PS1='sh2# ' unshare -Ur bash
sh2# echo $3

30623

sh2# id -u

0

sh2# readlink /proc/$$/ns/user
user: [4026532638]

@ Show UID and user NS for initial shell

@ Start a new shell in a new user NS
e Show PID of new shell

e Show UID and user NS of new shell

.org

System Programming - Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-15 §22.2

namespaces/userns_setns _test.c

$./userns_setns_test /proc/30623/ns/user

parent: readlink("/proc/self/ns/user") ==> user:[4026531837]
parent: eUID = 1000; eGID = 1000; capabilities: =
parent: setns() succeeded

parent: eUID = 0; eGID = O0; capabilities: =ep

child: readlink("/proc/self/ns/user") ==> user:[4026532639]
child: eUID = 65534; eGID = 65534; capabilities: =ep
child: setns() failed: Operation not permitted

In a second terminal window, we run our setns() test program:
@ Results of readlink() calls show:

e Parent userns_setns_test process is in initial user NS

e Child userns_setns_test is in another user NS

@ setns() in parent succeeded, and parent gained full
capabilities as it moved into the user NS

@ setns() in child fails; child has no capabilities in target NS

.0T'C

System Programming - Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-16 §22.2

namespaces/userns_setns _test.c

$./userns_setns_test /proc/30623/ns/user

parent: readlink("/proc/self/ns/user") ==>
user: [4026531837]

parent: setns() succeeded

parent: eUID = 0; eGID = O0; capabilities: =ep

child: readlink("/proc/self/ns/user") ==
user: [4026532639]
child: setns() failed: Operation not permitted

@ setns() in child failed:

e Rule 3: “processes in parent user NS that have same eUID
as creator of user NS have all capabilities in the NS”

e Parent userns_setns_test process was in parent user NS
of target user NS and so had CAP_SYS_ADMIN

e Child userns_setns_test process was in sibling user NS
and so had no capabilities in target user NS

.org

System Programming - Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-17 §22.2

Quiz (who can signal a process in a child user NS7)

Initial user NS

Process B ’ Process A ’ Process X ’
UID = 1001, caps: = UID = 1000, caps: = UID = 0, caps: =ep

= “ NS
v creator UID = 1000 S user 3
parent of

Child user NS

uid_map: 5 1000 10

Process C ‘ Process D ’
UID = 5, caps: =ep UID = 6, caps: =

@ Child user NS was created by a process with UID 1000

e That process (which presumably was not A) had capabilities that
allowed it to create a user NS with UID map with length > 1
@ Process X has all capabilities in initial user NS
@ Assume process A and process B have no capabilities in initial user NS
@ Assume C was first process in child NS and has all capabilities in NS
@ Process D has no capabilities

.org

System Programming - Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-18 §22.2

Quiz (who can signal a process in a child user NS7)

Initial user NS

Process B ’ Process A ’ Process X
UID = 1001, caps: = UID = 1000, caps: = UID = 0, caps: =ep

— “ NS
v creator UID = 1000 S user 3
parent of
Child user NS
uid_map: 5 1000 10
Process C ‘ Process D
UID = 5, caps: =ep UID = 6, caps: =

Sending a signal requires UID match or CAP_KILL capability
To which of B, C, D can process A send a signal?
Can B send a signal to D? Can D send a signal to B?

(*]
Q
(*)
@ Can process X send a signal to processes C and D?
@ Can process C send a signal to A? To B?

o

Can C send a signal to D?

.org

System Programming - Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-19 §22.2

Quiz (who can signal a process in a child user NS7)

Initial user NS

Process B ’ Process A ’ Process X ’
UID = 1001, caps: = UID = 1000, caps: = UID = 0, caps: =ep

= “ NS
v creator UID = 1000 S user 3
parent of

Child user NS

uid_map: 5 1000 10

Process C ‘ Process D ’
UID = 5, caps: =ep UID = 6, caps: =

@ A can't signal B, but can signal C (matching credentials) and D
(because A has capabilities in D's NS)

B can signal D (matching credentials); likewise, D can signal B
X can signal C and D (because it has capabilities in parent user NS)
C can signal A (credential match), but not B

C can signal D, because it has capabilities in its NS

.org

System Programming - Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-20 §22.2

Outline

22 User Namespaces and Capabilities 22-1

22.3 Exercises 22-21

Exercises

o Perform the following steps:

Q

.org

[Ubuntu only] If you are using Ubuntu 24.04 or later, you may need to disable
an AppArmor setting that disables the creation of user namespaces by
unprivileged users. First, check whether the setting is already turned off (0),
using the following command:

$ sudo sysctl kernel.apparmor_restrict_unprivileged_userns

If the setting is not off (0), you can turn it off using the following command:

$ sudo sysctl -w kernel.apparmor_restrict_unprivileged_userns=0

As an unprivileged user, start two sleep processes, one as the unprivileged user
and the other as UID 0:

$ id -u

1000

$ sleep 1000 &

$ sudo sleep 2000

As superuser, in another terminal window use unshare to create a user
namespace with root mappings and run a shell in that namespace:

$ SUDO_PS1="ns2# " sudo unshare -U -r bash --norc

System Programming - Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-22 §22.3

Exercises

@ (Root mappings == process’'s UID and GID in parent NS map to 0 in
child NS)

@ Setting the SUDO_PS1 environment variable causes sudo(8) to set the PS1
environment variable for the command that it executes. (PS1 defines the
prompt displayed by the shell.) The bash --norc option prevents the
execution of shell start-up scripts that might change PS1.

0 Verify that the shell has a full set of capabilities and a UID map “0 0 1" (i.e.,
UID 0 in the parent namespace maps to UID 0 in the child user namespace):

ns2# grep -E 'Cap(Prm|Eff)' /proc/$$/status # Or: getpcaps $$
ns2# cat /proc/$$/uid_map

e From this shell, try to kill each of the sleep processes started above:

ns2# ps -o 'pid uid cmd' -C sleep # Discover 'sleep' PIDs

ns2# kill -9 <PID-1>
ns2# kill -9 <PID-2>

Which of the kill commands succeeds? Why?

.org

System Programming - Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-23 §22.3

Exercises

e Write a program to set up two processes in a child user namespace as in the
scenario shown in slide 22-20. [template: namespaces/ex.userns_cap_sig_expt.c]

@ After compiling the program, assign capabilities to the executable as follows:

sudo setcap cap_setuid,cap_setgid=pe <program-file>

@ While running the program, try sending signals to processes “C” and “D"” from
a shell in the initial user namespace, in order to verify the answers given on
slide 22-20.

.org

System Programming - Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-24 §22.3

Outline

22 User Namespaces and Capabilities 22-1

22.4 What does it mean to be superuser in a namespace? 22-25

User namespaces and capabilities

@ Kernel grants initial process in new user NS a full set of
capabilities

@ But, those capabilities are available only for operations on
objects governed by the new user NS

.org

System Programming - Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-26 §22.4

User namespaces and capabilities

@ Kernel associates each non-user NS instance with a
specific user NS instance

e Each non-user NS is “owned” by a user NS

e When creating a new non-user NS, user NS of the creating
process becomes the owner of the new NS

@ Suppose a process operates on global resources governed by
a (non-user) NS:

e Privilege checks are done according to process’s capabilities
in user NS that owns the NS

@ = User NSs can deliver full capabilities inside a user NS
without allowing capabilities in outer user NS(s)

o (Barring kernel bugs)

.org

System Programming - Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-27 §22.4

User namespaces and capabilities—an example

v .-
Initial user namespace

_ 60& | creator eUID: 0 s
& *
S is owned by
cd 0y Child user namespace) Initial UTS Initial network
i oWl creator eUID: 1000 namespace namespace

[Second UTS] A _

,1s member of %
namespace o
! PRt
N/ Process X PR
Ibelbb\ - . K) - \%‘0
or > eUID inside NS: 0 .
or

eUID in outer NS: 1000
capabilities: =ep

@ Example scenario; X was created with: unshare -Ur -u <prog>
e Xisin a new user NS, created with root mappings

e Xisin anew UTS NS, which is owned by new user NS
e X is in initial instance of all other NS types (e.g., network NS)

.org

System Programming - Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-283 §22.4

User namespaces and capabilities—an example

v ..
Initial user namespace
creator eUID: 0

\
)
is owned b <
Y 4
cd by Child user namespace) Initial UTS Initial network
is oW creator eUID: 1000 namespace namespace
S d UTS e

(econ J Tis member of %

namespace S o

I - /‘OQ"

A S .
N/ Process X PR
02% Y Okt _4a ™
5@,5 .| eUID inside NS: 0 Lo
7| eUID in outer NS: 1000
capabilities: =ep

@ Suppose X tries to change host name (CAP_SYS_ADMIN)

@ E.g., hostname bienne
@ X is in second UTS NS

@ Privileges checked according to X's capabilities in user NS that owns
that UTS NS = succeeds (X has capabilities in user NS)

.org

System Programming - Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-29 §22.4

User namespaces and capabilities—an example

v .-
Initial user namespace
creator eUID: 0

\
\
is owned b <
Y 4
cd 0y Child user namespace) Initial UTS Initial network
is own! creator eUID: 1000 namespace namespace
S d UTS A -

[eeon J ,1s member of %

namespace oS

~ I _A~es

NS Process X PR
Ibbe}a < eUID inside NS: 0 T

7 eUID in outer NS: 1000
capabilities: =ep

@ Suppose X tries to bring network device up/down (CAP_NET_ADMIN)
@ E.g., ip link set dev lo down

@ X is in initial network NS

@ Privileges checked according to X's capabilities in user NS that owns
network NS = attempt fails (no capabilities in initial user NS)

.org

System Programming - Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-30 §22.4

Conta

iners and namespaces

Initial
user NS
_‘l_d
Initial Initial Initial Initial
PID NS UTS NS mnt NS NW NS
-7 user NS Rk T
IS ////;77—?__‘<::::j\\\\\\\\\;:~~-\\ is child of
‘l N ! r \| N
'(PID NS UTS NS | mnt NS NWNS | (2 user NS)
' (hostname) : (mnt list) (NW infra.)) is owned by
! 7 l . f R EE——
R b ~ N | B e s (a user NS)
.) init process| // cemmo--tl : ! Not all 1 s member of
S. *y (PID 1) 1 Container ! 'NSs are | T aNs)
\\~\ caps: =ep LTI i shown ,:

“Superuser” process in a container has root power over resources
governed by non-user NSs owned by container’s user NS

And does not have privilege in outside user NS
e (E.g., can’t change mounts seen by processes outside container)

.org

System Programming - Linux Containers ©2026 M. Kerrisk

User Namespaces and Capabilities 22-31 §22.4

Demo

. effect of capabilities in a user NS

Create a shell in new user and UTS NSs:

$ unshare -Ur -u bash
getpcaps $$

929: =ep # Shell has all capabilities in its user NS

Since this shell has all capabilities in user NS that owns its
UTS NS, we can change hostname:

hostname

bienne

hostname langwied
hostname

langwied

But, this shell is in a network NS owned by initial user NS,
and so can't turn a NW device down:

ip link set dev lo down
RTNETLINK answers: Operation not permitted

.org

System Programming - Linux Containers ©2026 M. Kerrisk

User Namespaces and Capabilities 22-32 §22.4

What about resources not governed by namespaces?

@ Some privileged operations relate to resources/features not
(yet) governed by any namespace

e E.g., load kernel modules, raise process nice values
@ Having all capabilities in a (noninitial) user NS doesn't grant

power to perform operations on features not currently
governed by any NS

o E.g., load/unload kernel modules, raise process nice values

e |IOW: to perform these operations, process must have the
relevant capability in the initial user NS

System Programming - Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-33 §22.4
Outline
22 User Namespaces and Capabilities 22-1

22.5 Discovering namespace relationships 22-34

Discovering namespace relationships

@ To know whether a process has a capability in a NS, we need
to know how NSs are related to each other

e Which user NS owns a nonuser NS?
e What is hierarchical relationship of user NSs?
e Which NS is each process a member of ?

@ We can discover this info using ioctl() operations and
/proc/PID/ns/* symlinks
@ Info can be used to build visualization tools for NSs
e An example: namespaces/namespaces_of.go

e A better example: https://github.com/TheDive0/1xkns

System Programming - Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-35 §22.5

ioctl() operations for namespaces

#include <sys/ioctl.h>
int ioctl(int fd, unsigned long request, ...);

@ There are many ioctl() operations...

e Certain joctl() operations can be applied to a file descriptor
(FD) that refers to a NS

e E.g., FD obtained by opening /proc/PID/ns/* file
o Details in joctl_ns(2)

@ Some of those operations return a (new) FD that refers to
another NS

o To determine which NS, we use stat()/fstat()

.org

System Programming - Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-36 §22.5

https://github.com/TheDiveO/lxkns

stat() and fstat()

#include <sys/stat.h>
int stat(const char *pathname, struct stat *statbuf);
int fstat(int fd, struct stat *statbuf);

@ The “stat” system calls return metadata from a file inode

@ Metadata is returned via struct stat, which includes fields:
e st_dev: device ID

e st_ino: inode number

e Device ID + inode # form unique identifier for NS

.org

System Programming - Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-37 §22.5

Comparing namespace identifiers

@ To discover NS that a file descriptor refers to, we compare
with /proc/PID/ns/* symlinks:

int fd = ioctl(...);

struct stat sbl, sb2;
fstat(fd, &sbl);
stat (path, &sb2); // 'path' is a /proc/PID/ns/* symlink

if (sbl.st dev == sb2.st dev && sbl.st ino == sb2.st ino) {
// 'fd' and 'path' refer to same NS

}

.org

System Programming - Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-38 §22.5

ioctl() operations for namespaces

@ NS GET_USERNS: return FD referring to owning user NS for
NS referred to by fd

o Returned FD can be compared (fstat(), stat()) with
/proc/PID/ns/user files to discover owning user NS

@ NS GET PARENT: return FD referring to the parent
namespace of NS referred to by fd

e Valid only for hierarchical namespaces (PID, user)

o Returned FD can be compared (fstat(), stat()) with
/proc/PID/ns/{pid,user} files to discover parent NS

e Synonymous with NS_GET_USERNS for user namespaces

System Programming - Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-39 §22.5

ioctl() operations for namespaces

@ NS GET OWNER_UID: return UID of creator of user NS
referred to by fd

@ NS GET NSTYPE: return the type of NS referred to by fd
e Returns one of CLONE_ NEW* constants

@ Example code:

e namespaces/ns_capable.c

e namespaces/namespaces_of.go
e namespaces/pid_namespaces.go
o joctl_ns(2)

@ http://blog.man7.org/2016/12/

introspecting-namespace-relationships.html

.org

System Programming - Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-40 §22.5

http://blog.man7.org/2016/12/introspecting-namespace-relationships.html
http://blog.man7.org/2016/12/introspecting-namespace-relationships.html

namespaces/namespaces_of.go example

@ namespaces/namespaces_of.go shows NS memberships of

specified processes, in context of user NS hierarchy

@ To demo, we set up scenario shown in earlier diagram:

$ echo $3% # PID of a shell in initial user NS
327

$ unshare -Ur -u sh # Create new user and UTS NSs

echo $$ # PID of shell in new NSs

353

e Run a shell in new user and UTS NSs

@ That shell will be a member of initial instance of other NSs

.org

System Programming - Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities

22-41 §22.5

Discovering namespace relationships

@ Inspect with namespaces/namespaces_of.go program:

$ go run namespaces_of.go --namespaces=net,uts 327 353
user {4 4026531837} <UID: 0>
[327]
net {4 4026532008}
[327 353]
uts {4 4026531838}
[327]
user {4 4026532760} <UID: 1000>
[353]
uts {4 4026532761}
[353]

Indentation indicates user NS ownership / parental
relationship between user NSs

Shells are in same network NS, but different UTS NSs
Second UTS NS is owned by second user NS

filesystem

.org

NS IDs ({...}) include device ID (4) from (hidden) NS

System Programming - Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities

2242 §22.5

Isns(8)

@ Recent versions of /sns(8) can also be used to show NS
relationships (util-linux v2.38, 2021)

$ 1sns -o 'ns,type,pid' -t user -t net -t uts --tree=owner -p 353
NS TYPE PID
4026531837 user 327
-4026532008 net 327
L-4026532760 user 353
L 4026532761 uts 353

@ But, more limited than namespaces_of.go and Ixkns
e Can show info only about all NSs, or NSs of a single process

o “PID" is lowest PID number in NS (which might not be first
process in a new NS)

e Can't list all PIDs that are members of NS

@ Can list NSs that have no member processes but are pinned
by bind mounts using: 1lsns --persistent

System Programming - Linux Containers ©2026 M. Kerrisk User Namespaces and Capabilities 22-43 §22.5
Outline
22 User Namespaces and Capabilities 22-1

22.6 Homework exercises 22_44

