
System Programming for Linux Containers

Seccomp

Michael Kerrisk, man7.org © 2026

mtk@man7.org

January 2026

Outline Rev: # d49d0b54be95

24 Seccomp 24-1
24.1 Introduction 24-3
24.2 Seccomp filtering and BPF 24-5
24.3 The BPF virtual machine and BPF instructions 24-12
24.4 BPF filter return values 24-23
24.5 Installing a BPF program 24-26
24.6 BPF program examples 24-30
24.7 Checking the architecture 24-42
24.8 Exercises 24-47
24.9 Productivity aids (libseccomp and other tools) 24-52
24.10 Performance considerations 24-62
24.11 Homework exercises 24-65
24.12 Applications and further information 24-68

Outline
24 Seccomp 24-1
24.1 Introduction 24-3
24.2 Seccomp filtering and BPF 24-5
24.3 The BPF virtual machine and BPF instructions 24-12
24.4 BPF filter return values 24-23
24.5 Installing a BPF program 24-26
24.6 BPF program examples 24-30
24.7 Checking the architecture 24-42
24.8 Exercises 24-47
24.9 Productivity aids (libseccomp and other tools) 24-52
24.10 Performance considerations 24-62
24.11 Homework exercises 24-65
24.12 Applications and further information 24-68

What is seccomp?

Kernel provides large number of system calls
≈400 system calls

Each system call is a vector for attack against kernel
Most programs use only small subset of system calls

Remaining systems calls should never legitimately occur
If they do occur, perhaps it is because program has been
compromised

Seccomp (“secure computing”) = mechanism to restrict
system calls that a process may make

Reduces attack surface of kernel
A key component for building application sandboxes

Used by many apps; e.g., Chrome, Firefox, OpenSSH, vsftpd,
systemd, Docker, LXC, Flatpak, strace

System Programming·Linux Containers ©2026 M. Kerrisk Seccomp 24-4 §24.1

Outline
24 Seccomp 24-1
24.1 Introduction 24-3
24.2 Seccomp filtering and BPF 24-5
24.3 The BPF virtual machine and BPF instructions 24-12
24.4 BPF filter return values 24-23
24.5 Installing a BPF program 24-26
24.6 BPF program examples 24-30
24.7 Checking the architecture 24-42
24.8 Exercises 24-47
24.9 Productivity aids (libseccomp and other tools) 24-52
24.10 Performance considerations 24-62
24.11 Homework exercises 24-65
24.12 Applications and further information 24-68

Seccomp filtering

Allows filtering based on system call number and argument
(register) values

Pointers can not be dereferenced
Because of time-of-check, time-of-use race conditions
Seccomp and deep argument inspection
https://lwn.net/Articles/822256/, June 2020
Landlock LSM, added in Linux 5.13 (2021), addresses this
restriction(?)

System Programming·Linux Containers ©2026 M. Kerrisk Seccomp 24-6 §24.2

https://lwn.net/Articles/822256/

Seccomp filtering overview

Steps:
1 Construct filter program that specifies permitted syscalls
2 Process installs filter into kernel
3 Process executes code that should be filtered

For example: exec() new program, or invoke function in
dynamically loaded library (plug-in)

Once installed, every syscall made by process triggers
execution of filter
Installed filters can’t be removed

Filter == declaration that we don’t trust subsequently
executed code

Filters are inherited by children of fork()
Filters are preserved during exec()

System Programming·Linux Containers ©2026 M. Kerrisk Seccomp 24-7 §24.2

BPF byte code

Seccomp filters are expressed as BPF (Berkeley Packet Filter)
programs
BPF is a byte code which is interpreted by a virtual
machine (VM) implemented inside kernel

System Programming·Linux Containers ©2026 M. Kerrisk Seccomp 24-8 §24.2

BPF origins

BPF originally devised (in 1992) for tcpdump
Monitoring tool to display packets passing over network
http://www.tcpdump.org/papers/bpf-usenix93.pdf

Volume of network traffic is enormous ⇒ must filter for
packets of interest
BPF allows in-kernel selection of packets

Filtering based on fields in packet header
Filtering in kernel more efficient than filtering in user space

Unwanted packets are discarded early
Avoid expense of passing every packet over
kernel-user-space boundary

© Seccomp ⇒ generalize BPF model to filter on syscall info

System Programming·Linux Containers ©2026 M. Kerrisk Seccomp 24-9 §24.2

Generalizing BPF

BPF originally designed to work with network packet headers
Seccomp2 developers realized BPF could be generalized to
solve different problem: filtering of system calls

Same basic task: test-and-branch processing based on
content of a small set of memory locations

System Programming·Linux Containers ©2026 M. Kerrisk Seccomp 24-10 §24.2

http://www.tcpdump.org/papers/bpf-usenix93.pdf

BPF virtual machine

BPF defines a virtual machine (VM) that can be
implemented inside kernel
VM characteristics:

Simple instruction set
Small set of instructions
All instructions are same size (64 bits)
Implementation is simple and fast

Programs are limited to 4096 instructions
Only branch-forward instructions

Programs are directed acyclic graphs (DAGs)
Kernel can verify validity/safety of programs

Program completion is guaranteed (DAGs)
Simple instruction set ⇒ can verify opcodes and arguments
Can detect dead code

System Programming·Linux Containers ©2026 M. Kerrisk Seccomp 24-11 §24.2

Outline
24 Seccomp 24-1
24.1 Introduction 24-3
24.2 Seccomp filtering and BPF 24-5
24.3 The BPF virtual machine and BPF instructions 24-12
24.4 BPF filter return values 24-23
24.5 Installing a BPF program 24-26
24.6 BPF program examples 24-30
24.7 Checking the architecture 24-42
24.8 Exercises 24-47
24.9 Productivity aids (libseccomp and other tools) 24-52
24.10 Performance considerations 24-62
24.11 Homework exercises 24-65
24.12 Applications and further information 24-68

Key features of BPF virtual machine

Accumulator register (32-bit)
Data area (data to be operated on)

In seccomp context: data area describes system call
All instructions are 64 bits, with a fixed format

Expressed as a C structure:
struct sock_filter {

__u16 code; /* Filter code (opcode)*/
__u8 jt; /* Jump true */
__u8 jf; /* Jump false */
__u32 k; /* Multiuse field (operand) */

};

See <linux/filter.h> and <linux/bpf_common.h>

No state is preserved between BPF program invocations
E.g., can’t intercept n’th syscall of a particular type

System Programming·Linux Containers ©2026 M. Kerrisk Seccomp 24-13 §24.3

BPF instruction set

Instruction set includes:
Load instructions (BPF_LD)
Store instructions (BPF_ST)

There is a “working memory” area where info can be stored
(not persistent)

Jump instructions (BPF_JMP)
Arithmetic/logic instructions (BPF_ALU)

BPF_ADD, BPF_SUB, BPF_MUL, BPF_DIV, BPF_MOD, BPF_NEG
BPF_OR, BPF_AND, BPF_XOR, BPF_LSH, BPF_RSH

Return instructions (BPF_RET)
Terminate filter processing
Report a status telling kernel what to do with syscall

System Programming·Linux Containers ©2026 M. Kerrisk Seccomp 24-14 §24.3

BPF jump instructions

Conditional and unconditional jump instructions provided
Conditional jump instructions consist of

Opcode specifying condition to be tested
Value to test against
Two jump targets

jt : target if condition is true
jf : target if condition is false

Conditional jump instructions:
BPF_JEQ: jump if equal
BPF_JGT: jump if greater
BPF_JGE: jump if greater or equal
BPF_JSET: bit-wise AND + jump if nonzero result
jf target ⇒ no need for BPF_{JNE,JLT,JLE,JCLEAR}

System Programming·Linux Containers ©2026 M. Kerrisk Seccomp 24-15 §24.3

BPF jump instructions

Targets are expressed as relative offsets in instruction list
0 == no jump (execute next instruction)
jt and jf are 8 bits ⇒ 255 maximum offset for conditional
jumps

Unconditional BPF_JA (“jump always”) uses k as offset,
allowing much larger jumps

System Programming·Linux Containers ©2026 M. Kerrisk Seccomp 24-16 §24.3

Seccomp BPF data area

Seccomp provides data describing syscall to filter program
Buffer is read-only

I.e., seccomp filter can’t change syscall or syscall arguments

Can be expressed as a C structure...

System Programming·Linux Containers ©2026 M. Kerrisk Seccomp 24-17 §24.3

Seccomp BPF data area

struct seccomp_data {
int nr; /* System call number (4 bytes) */
__u32 arch; /* AUDIT_ARCH_* value */
__u64 instruction_pointer; /* CPU IP */
__u64 args[6]; /* System call arguments */

};

nr : system call number (architecture-dependent); 4-byte int
arch : identifies architecture

Constants defined in <linux/audit.h>
AUDIT_ARCH_X86_64, AUDIT_ARCH_ARM, etc.

instruction_pointer : CPU instruction pointer
args : system call arguments

System calls have maximum of six arguments
Number of elements used depends on system call

System Programming·Linux Containers ©2026 M. Kerrisk Seccomp 24-18 §24.3

Building BPF instructions

One could code BPF instructions numerically by hand...
But, header files define convenience macros (and symbolic
constants) to ease the task:
#define BPF_STMT(code, k) \

{ (unsigned short)(code), 0, 0, k }
#define BPF_JUMP(code, k, jt, jf) \

{ (unsigned short)(code), jt, jf, k }

These macros just plug values together to form sock_filter
structure initializer
struct sock_filter {

__u16 code; /* Filter code (opcode)*/
__u8 jt; /* Jump true */
__u8 jf; /* Jump false */
__u32 k; /* Multiuse field (operand) */

};

System Programming·Linux Containers ©2026 M. Kerrisk Seccomp 24-19 §24.3

Building BPF instructions: examples

Load architecture number into accumulator
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,

offsetof(struct seccomp_data, arch))

Opcode here is constructed by ORing three values together:
BPF_LD: load
BPF_W: operand size is a word (4 bytes)
BPF_ABS: address mode specifying that source of load is data
area (containing system call data)
See <linux/bpf_common.h> for definitions of opcode
constants

Operand is architecture field of data area
offsetof() yields byte offset of a field in a structure

System Programming·Linux Containers ©2026 M. Kerrisk Seccomp 24-20 §24.3

Building BPF instructions: examples

Test value in accumulator
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, AUDIT_ARCH_X86_64, 1, 0)

BPF_JMP | BPF_JEQ: jump with test on equality
BPF_K: value to test against is in generic multiuse field (k)
k contains value AUDIT_ARCH_X86_64
jt value is 1, meaning skip one instruction if test is true
jf value is 0, meaning skip zero instructions if test is false

I.e., continue execution at following instruction

System Programming·Linux Containers ©2026 M. Kerrisk Seccomp 24-21 §24.3

Building BPF instructions: examples

Return a value that causes kernel to kill process
BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_KILL_PROCESS)

Arithmetic/logic instruction: add one to accumulator
BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1)

Arithmetic/logic instruction: right shift accumulator 12 bits
BPF_STMT(BPF_ALU | BPF_RSH | BPF_K, 12)

System Programming·Linux Containers ©2026 M. Kerrisk Seccomp 24-22 §24.3

Outline
24 Seccomp 24-1
24.1 Introduction 24-3
24.2 Seccomp filtering and BPF 24-5
24.3 The BPF virtual machine and BPF instructions 24-12
24.4 BPF filter return values 24-23
24.5 Installing a BPF program 24-26
24.6 BPF program examples 24-30
24.7 Checking the architecture 24-42
24.8 Exercises 24-47
24.9 Productivity aids (libseccomp and other tools) 24-52
24.10 Performance considerations 24-62
24.11 Homework exercises 24-65
24.12 Applications and further information 24-68

Filter return value

Once filter is installed, every syscall is tested against filter
Seccomp filter must return a value to kernel indicating
whether syscall is permitted

Otherwise EINVAL when attempting to install filter
Return value is 32 bits, in two parts:

Most significant 16 bits specify an action to kernel
SECCOMP_RET_ACTION_FULL mask

Least significant 16 bits specify “data” for return value
SECCOMP_RET_DATA mask

#define SECCOMP_RET_ACTION_FULL 0xffff0000U
#define SECCOMP_RET_DATA 0x0000ffffU

System Programming·Linux Containers ©2026 M. Kerrisk Seccomp 24-24 §24.4

Filter return action

Possible filter return actions include:
SECCOMP_RET_ALLOW: system call is allowed to execute
SECCOMP_RET_KILL_PROCESS (since Linux 4.14, 2017):
process (all threads) is immediately killed

Terminated as though process had been killed with SIGSYS
There is no actual SIGSYS signal delivered, but...
To parent (via wait()) it appears child was killed by SIGSYS

Core dump is also produced
SECCOMP_RET_ERRNO: return an error from system call

System call is not executed
Value in SECCOMP_RET_DATA is returned in errno

But, capped to 4095
There are other possible return actions....

See seccomp(2) manual page
System Programming·Linux Containers ©2026 M. Kerrisk Seccomp 24-25 §24.4

Outline
24 Seccomp 24-1
24.1 Introduction 24-3
24.2 Seccomp filtering and BPF 24-5
24.3 The BPF virtual machine and BPF instructions 24-12
24.4 BPF filter return values 24-23
24.5 Installing a BPF program 24-26
24.6 BPF program examples 24-30
24.7 Checking the architecture 24-42
24.8 Exercises 24-47
24.9 Productivity aids (libseccomp and other tools) 24-52
24.10 Performance considerations 24-62
24.11 Homework exercises 24-65
24.12 Applications and further information 24-68

Installing a BPF program

A process installs a filter for itself using one of:
seccomp(SECCOMP_SET_MODE_FILTER, flags, &fprog)

Since Linux 3.17 (2014)
Provides additional features unavailable with prctl()

prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER,
&fprog)

Legacy mechanism for installing seccomp filter

&fprog is a pointer to a BPF program:
struct sock_fprog {

unsigned short len; /* Number of instructions */
struct sock_filter *filter; /* Pointer to program

(array of instructions) */
};

System Programming·Linux Containers ©2026 M. Kerrisk Seccomp 24-27 §24.5

Installing a BPF program

To install a filter, one of the following must be true:
Caller is privileged (CAP_SYS_ADMIN in its user namespace)
Caller has set the no_new_privs process attribute:
prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);

Per-thread attribute; once set, no_new_privs can’t be unset
! no_new_privs && ! CAP_SYS_ADMIN ⇒
seccomp()/prctl(PR_SET_SECCOMP) fails with EACCES

System Programming·Linux Containers ©2026 M. Kerrisk Seccomp 24-28 §24.5

Effect of no_new_privs process attribute

Effect of no_new_privs process attribute:
In subsequent execve() calls:

Causes set-UID and set-GID bits to be ignored
Prevents file from conferring permitted capabilities to
process†

Prevents possibility of attacker starting privileged program
and manipulating it to misbehave using a seccomp filter

†More precisely: after execve(), process permitted set will be intersection of
[process permitted set before execve()] and [file permitted set]

System Programming·Linux Containers ©2026 M. Kerrisk Seccomp 24-29 §24.5

Outline
24 Seccomp 24-1
24.1 Introduction 24-3
24.2 Seccomp filtering and BPF 24-5
24.3 The BPF virtual machine and BPF instructions 24-12
24.4 BPF filter return values 24-23
24.5 Installing a BPF program 24-26
24.6 BPF program examples 24-30
24.7 Checking the architecture 24-42
24.8 Exercises 24-47
24.9 Productivity aids (libseccomp and other tools) 24-52
24.10 Performance considerations 24-62
24.11 Homework exercises 24-65
24.12 Applications and further information 24-68

Example: seccomp/seccomp_deny_open.c

1 int main(int argc, char *argv[]) {
2 prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
3
4 install_filter();
5
6 open("/tmp/a", O_RDONLY);
7
8 printf("We shouldn't see this message\n");
9 exit(EXIT_SUCCESS);

10 }

Program installs a filter that prevents open() and openat() being
called, and then calls open()

Set no_new_privs bit
Install seccomp filter
Call open()

System Programming·Linux Containers ©2026 M. Kerrisk Seccomp 24-31 §24.6

Example: seccomp/seccomp_deny_open.c

1 static void install_filter(void) {
2 struct sock_filter filter[] = {
3
4 /* Architecture-check code not shown */
5
6 BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
7 offsetof(struct seccomp_data, nr)),
8 ...

BPF filter program consists of a series of sock_filter structs
For now we ignore some BPF code that checks the
architecture that BPF program is executing on

" This is an essential part of every BPF filter program
Load system call number into accumulator
(BPF program continues on next slide)

System Programming·Linux Containers ©2026 M. Kerrisk Seccomp 24-32 §24.6

Example: seccomp/seccomp_deny_open.c

1 #ifdef __NR_open /* Not all architectures have open() */
2 BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, __NR_open, 2, 0),
3 #endif
4 BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, __NR_openat, 1, 0),
5 BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_ALLOW),
6 BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_KILL_PROCESS)
7 };

Test if system call number matches __NR_open
True: advance 2 instructions ⇒ kill process
False: advance 0 instructions ⇒ next test
(open() is absent on some architectures, because it can be
implemented using openat())

Test if system call number matches __NR_openat
True: advance 1 instruction ⇒ kill process
False: advance 0 instructions ⇒ allow syscall

(Note: creat(), openat2(), + open_by_handle_at() are still not filtered)

System Programming·Linux Containers ©2026 M. Kerrisk Seccomp 24-33 §24.6

Example: seccomp/seccomp_deny_open.c

1 struct sock_fprog prog = {
2 .len = sizeof(filter) / sizeof(filter[0]),
3 .filter = filter,
4 };
5
6 if (seccomp(SECCOMP_SET_MODE_FILTER, 0, &prog) == -1)
7 errExit("seccomp");
8 }

Construct argument for seccomp()
Install filter

System Programming·Linux Containers ©2026 M. Kerrisk Seccomp 24-34 §24.6

Example: seccomp/seccomp_deny_open.c

Upon running the program, we see:
$./seccomp_deny_open
Bad system call # Message printed by shell
$ echo $? # Display exit status of last command
159

“Bad system call” was printed by shell, because it looks like
its child was killed by SIGSYS
Exit status of 159 (== 128 + 31) also indicates termination
as though killed by SIGSYS

Exit status of process killed by signal is 128 + signum
SIGSYS is signal number 31 on this architecture

(List signals and their numbers with: kill -l)

System Programming·Linux Containers ©2026 M. Kerrisk Seccomp 24-35 §24.6

Example: seccomp/seccomp_control_open.c

A more sophisticated example
Filter based on flags argument of open() / openat()

O_CREAT specified ⇒ kill process
O_WRONLY or O_RDWR specified ⇒ cause call to fail with
ENOTSUP error

flags is arg. 2 of open(), and arg. 3 of openat() :
int open(const char *pathname, int flags, ...);
int openat(int dirfd, const char *pathname, int flags, ...);

flags serves exactly the same purpose for both calls

System Programming·Linux Containers ©2026 M. Kerrisk Seccomp 24-36 §24.6

Example: seccomp/seccomp_control_open.c

struct sock_filter filter[] = {
/* Architecture-check code not shown */

BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
offsetof(struct seccomp_data, nr)),

...
#ifdef __NR_open /* Not all architectures have open() */

/* Is this an open() syscall? */
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, __NR_open, 0, 2),
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,

offsetof(struct seccomp_data, args[1])),
BPF_JUMP(BPF_JMP | BPF_JA, 3, 0, 0),

#endif

Load system call number
For open(), load flags argument (args[1]) into accumulator,
and then skip to flags processing

(Some architectures don’t have open())

System Programming·Linux Containers ©2026 M. Kerrisk Seccomp 24-37 §24.6

Example: seccomp/seccomp_control_open.c

/* Is this an openat() syscall? */
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, __NR_openat, 1, 0),

BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_ALLOW),

BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
offsetof(struct seccomp_data, args[2])),

For openat(), load flags argument (args[2]) into accumulator
and continue to flags processing
Allow all other system calls

System Programming·Linux Containers ©2026 M. Kerrisk Seccomp 24-38 §24.6

Example: seccomp/seccomp_control_open.c

BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, O_CREAT, 0, 1),
BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_KILL_PROCESS),

BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, O_WRONLY | O_RDWR, 0, 1),
BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_ERRNO | ENOTSUP),

BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_ALLOW)
};

Process flags value:
Test if O_CREAT bit is set in flags

True: skip 0 instructions ⇒ kill process
False: skip 1 instruction

Test if O_WRONLY or O_RDWR is set in flags
True: cause call to fail with ENOTSUP error in errno
False: allow call to proceed

System Programming·Linux Containers ©2026 M. Kerrisk Seccomp 24-39 §24.6

Example: seccomp/seccomp_control_open.c

int main(int argc, char *argv[]) {
prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
install_filter();

if (open("/tmp/a", O_RDONLY) == -1)
perror("open1");

if (open("/tmp/a", O_WRONLY) == -1)
perror("open2");

if (open("/tmp/a", O_RDWR) == -1)
perror("open3");

if (open("/tmp/a", O_CREAT | O_RDWR, 0600) == -1)
perror("open4");

exit(EXIT_SUCCESS);
}

Test open() calls with various flags

System Programming·Linux Containers ©2026 M. Kerrisk Seccomp 24-40 §24.6

Example: seccomp/seccomp_control_open.c

$ touch /tmp/a
$./seccomp_control_open
open2: Operation not supported
open3: Operation not supported
Bad system call
$ echo $?
159

First open() succeeded
Second and third open() calls failed

Kernel produced ENOTSUP error for call
Fourth open() call caused process to be killed

(159 == 128 + 31; SIGSYS is signal 31)

System Programming·Linux Containers ©2026 M. Kerrisk Seccomp 24-41 §24.6

Outline
24 Seccomp 24-1
24.1 Introduction 24-3
24.2 Seccomp filtering and BPF 24-5
24.3 The BPF virtual machine and BPF instructions 24-12
24.4 BPF filter return values 24-23
24.5 Installing a BPF program 24-26
24.6 BPF program examples 24-30
24.7 Checking the architecture 24-42
24.8 Exercises 24-47
24.9 Productivity aids (libseccomp and other tools) 24-52
24.10 Performance considerations 24-62
24.11 Homework exercises 24-65
24.12 Applications and further information 24-68

Checking the architecture

Checking architecture value should be first step in any BPF
program
Syscall numbers differ across architectures!

May have built seccomp BPF BLOB for one architecture, but
accidentally load it on different architecture

Hardware may support multiple system call conventions
Modern x86 hardware supports three(!) architecture+ABI
conventions
System call numbers may differ under each convention
Similar issues occur on other platforms

E.g., AArch64 can execute AArch32 code, but set of syscalls
differs somewhat on each architecture

System Programming·Linux Containers ©2026 M. Kerrisk Seccomp 24-43 §24.7

Checking the architecture: Intel architectures

E.g. modern Intel systems support x86-64, i386, and x32,
each of which has unique syscall numbers

x86-64 (AUDIT_ARCH_X86_64): modern x86 arch. with
64-bit instructions, larger address space, richer register set
i386 (AUDIT_ARCH_I386): historical 32-bit Intel arch. with
32-bit instruction set and address space
x32 (Linux 3.4, 2012): use modern x86 arch. with 32-bit
pointers/long (not widely supported in distributions)

Can result in more compact/faster code in some cases
" Same arch value (AUDIT_ARCH_X86_64) as x86-64, but bit
30 (X32_SYSCALL_BIT) set in syscall number (nr)

Checking arch in each filter invocation is essential because
architecture may change over life of process (execve())

Interesting experiment in seccomp/seccomp_multiarch.c

System Programming·Linux Containers ©2026 M. Kerrisk Seccomp 24-44 §24.7

Checking the architecture: Intel x86-64

struct sock_filter filter[] = {
BPF_STMT(BPF_LD | BPF_W | BPF_ABS, offsetof(struct seccomp_data,arch)),

BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, AUDIT_ARCH_X86_64, 0, 2),

BPF_STMT(BPF_LD | BPF_W | BPF_ABS, offsetof(struct seccomp_data, nr)),

#define X32_SYSCALL_BIT 0x40000000
BPF_JUMP(BPF_JMP | BPF_JGE | BPF_K, X32_SYSCALL_BIT, 0, 1),

BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_KILL_PROCESS),

/* Further BPF code... */

Load architecture; kill process if not as expected
Load system call number; kill process if this is an x32 system
call (bit 30 is set)

System Programming·Linux Containers ©2026 M. Kerrisk Seccomp 24-45 §24.7

Checking the architecture: AArch64

struct sock_filter filter[] = {
BPF_STMT(BPF_LD | BPF_W | BPF_ABS, offsetof(struct seccomp_data,arch)),

BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, AUDIT_ARCH_AARCH64, 1, 0),
BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_KILL_PROCESS),

/* Further BPF code... */

Load architecture; kill process if not as expected

System Programming·Linux Containers ©2026 M. Kerrisk Seccomp 24-46 §24.7

Outline
24 Seccomp 24-1
24.1 Introduction 24-3
24.2 Seccomp filtering and BPF 24-5
24.3 The BPF virtual machine and BPF instructions 24-12
24.4 BPF filter return values 24-23
24.5 Installing a BPF program 24-26
24.6 BPF program examples 24-30
24.7 Checking the architecture 24-42
24.8 Exercises 24-47
24.9 Productivity aids (libseccomp and other tools) 24-52
24.10 Performance considerations 24-62
24.11 Homework exercises 24-65
24.12 Applications and further information 24-68

Notes for online practical sessions

Small groups in breakout rooms
Write a note into the Discord #general channelif you have a
preferred group

We will go faster, if groups collaborate on solving the
exercise(s)

You can share a screen in your room
I will circulate regularly between rooms to answer questions
Zoom has an “Ask for help” button...
Keep an eye on the Discord #general channel

Perhaps with further info about exercise;
Or a note that the exercise merges into a break

When your room has finished, write a message in the Discord
#general channel: “*** Room X has finished ***”

Then I have an idea of how many people have finished
System Programming·Linux Containers ©2026 M. Kerrisk Seccomp 24-48 §24.8

Shared screen etiquette

It may help your colleagues if you use a larger than normal font!
In many environments (e.g., xterm, VS Code), we can adjust the
font size with Control+Shift+“+” and Control+“-”
Or (e.g., emacs) hold down Control key and use mouse wheel

Long shell prompts make reading your shell session difficult
Use PS1='$ ' or PS1='# '

Low contrast color themes are difficult to read; change this if you can
Turn on line numbering in your editor

In vim / neovim use: :set number
In emacs use: M-x display-line-numbers-mode <RETURN>

M-x means Left-Alt+x

For collaborative editing, relative line-numbering is evil....
In vim / neovim use: :set nornu
In emacs, the following should suffice:
M-: (display-line-numbers-mode) <RETURN>
M-: (setq display-line-numbers 'absolute) <RETURN>

M-: means Left-Alt+Shift+:

System Programming·Linux Containers ©2026 M. Kerrisk Seccomp 24-49 §24.8

Using tmate in in-person practical sessions

In order to share an X-term session with others, do the following:
Enter the command tmate in an X-term, and you’ll see the following:
$ tmate
...
Connecting to ssh.tmate.io...
Note: clear your terminal before sharing readonly access
web session read only: ...
ssh session read only: ssh S0mErAnD0m5Tr1Ng@lon1.tmate.io
web session: ...
ssh session: ssh S0mEoTheRrAnD0m5Tr1Ng@lon1.tmate.io

Share last “ssh” string with colleague(s) via a text channel
Or: "ssh session read only" string gives others read-only access

Your colleagues should paste that string into an X-term...

Now, you are sharing an X-term session in which anyone can type
Any "mate" can cut the connection to the session with the
3-character sequence <ENTER> ∼ .

To see above message again: tmate show-messages

System Programming·Linux Containers ©2026 M. Kerrisk Seccomp 24-50 §24.8

Exercises

1 Extend the filter in seccomp/seccomp_control_open.c so that if O_TRUNC is
specified in the flags argument, the call fails with the error EACCES, and adjust
main() to test for this case.

2 Write a program ([template: seccomp/ex.seccomp_no_children.c], and you will
need to edit the EXERCISE_FILES_EXE line in the Makefile so that it builds this
program) that installs a filter that denies execution of fork(), clone(), and clone3(),
causing fork() to fail with ENOTSUP, clone() to fail with EPERM, and clone3() to fail
with EACCES. (Note: there is no fork() system call on certain architectures, such as
AArch64, so you should not include try to filter for fork() calls on those
architectures.) The program should support the following command-line arguments:

./ex.seccomp_no_children prog arg...

Having installed the filter, the program should then exec() prog with the supplied
arguments. Obviously, an interesting program to exec() is one that employs fork() or
clone(). Try executing the procexec/zombie.c program (which calls fork()). What
error does the program fail with? (Read VERSIONS (or NOTES) in fork(2) to
understand why.)

3 U U U Extend the seccomp/seccomp_deny_open.c program so that it also denies
the creat(), openat2(), and open_by_handle_at() system calls.

System Programming·Linux Containers ©2026 M. Kerrisk Seccomp 24-51 §24.8

Outline
24 Seccomp 24-1
24.1 Introduction 24-3
24.2 Seccomp filtering and BPF 24-5
24.3 The BPF virtual machine and BPF instructions 24-12
24.4 BPF filter return values 24-23
24.5 Installing a BPF program 24-26
24.6 BPF program examples 24-30
24.7 Checking the architecture 24-42
24.8 Exercises 24-47
24.9 Productivity aids (libseccomp and other tools) 24-52
24.10 Performance considerations 24-62
24.11 Homework exercises 24-65
24.12 Applications and further information 24-68

