System Programming for Linux Containers

Seccomp

Michael Kerrisk, man7.org © 2026

mtk@man7.org

January 2026

Outline

24 Seccomp 24-1
24.1 Introduction 24-3
24.2 Seccomp filtering and BPF 24-5
24.3 The BPF virtual machine and BPF instructions 24-12
24.4 BPF filter return values 24-23
24.5 Installing a BPF program 24-26
24.6 BPF program examples 24-30
24.7 Checking the architecture 24-42
24.8 Exercises 24-47
24.9 Productivity aids (/ibseccomp and other tools) 24-52
24.10 Performance considerations 24-62
24.11 Homework exercises 24-65
24.12 Applications and further information 24-68

Outline

24 Seccomp 24-1
24.1 Introduction 24-3

What is seccomp?

@ Kernel provides large number of system calls
e ~400 system calls
@ Each system call is a vector for attack against kernel

@ Most programs use only small subset of system calls
e Remaining systems calls should never legitimately occur

e If they do occur, perhaps it is because program has been
compromised

@ Seccomp (“secure computing”) = mechanism to restrict
system calls that a process may make

e Reduces attack surface of kernel
e A key component for building application sandboxes

@ Used by many apps; e.g., Chrome, Firefox, OpenSSH, vsftpd,
systemd, Docker, LXC, Flatpak, strace

System Programming - Linux Containers ©2026 M. Kerrisk Seccomp 24-4 §24.1

Outline

24 Seccomp 24-1

24.2 Seccomp filtering and BPF 24-5

Seccomp filtering

@ Allows filtering based on system call number and argument
(register) values
e Pointers can not be dereferenced

@ Because of time-of-check, time-of-use race conditions
Seccomp and deep argument inspection
https://lwn.net/Articles/822256/, June 2020

e Landlock LSM, added in Linux 5.13 (2021), addresses this
restriction(?)

.org

System Programming - Linux Containers ©2026 M. Kerrisk Seccomp 24-6 §24.2

https://lwn.net/Articles/822256/

Seccomp filtering overview

@ Steps:
@ Construct filter program that specifies permitted syscalls

© Process installs filter into kernel

© Process executes code that should be filtered

e For example: exec() new program, or invoke function in
dynamically loaded library (plug-in)

@ Once installed, every syscall made by process triggers
execution of filter

@ Installed filters can’t be removed

e Filter == declaration that we don't trust subsequently
executed code

o Filters are inherited by children of fork()

e Filters are preserved during exec()

System Programming - Linux Containers ©2026 M. Kerrisk Seccomp 24-7 §24.2

BPF byte code

@ Seccomp filters are expressed as BPF (Berkeley Packet Filter)
programs

e BPF is a byte code which is interpreted by a virtual
machine (VM) implemented inside kernel

org

System Programming - Linux Containers ©2026 M. Kerrisk Seccomp 24-8 §24.2

BPF origins

e BPF originally devised (in 1992) for tcpdump
e Monitoring tool to display packets passing over network

e http://www.tcpdump.org/papers/bpf-usenix93. pdf

@ Volume of network traffic is enormous = must filter for
packets of interest

@ BPF allows in-kernel selection of packets
o Filtering based on fields in packet header

@ Filtering in kernel more efficient than filtering in user space
e Unwanted packets are discarded early

e Avoid expense of passing every packet over
kernel-user-space boundary

@ © Seccomp = generalize BPF model to filter on syscall info

System Programming - Linux Containers ©2026 M. Kerrisk Seccomp 24-9 §24.2

Generalizing BPF

@ BPF originally designed to work with network packet headers

@ Seccomp?2 developers realized BPF could be generalized to
solve different problem: filtering of system calls

e Same basic task: test-and-branch processing based on
content of a small set of memory locations

org

System Programming - Linux Containers ©2026 M. Kerrisk Seccomp 24-10 §24.2

http://www.tcpdump.org/papers/bpf-usenix93.pdf

BPF virtual machine

o BPF defines a virtual machine (VM) that can be
implemented inside kernel

@ VM characteristics:
e Simple instruction set
@ Small set of instructions

e All instructions are same size (64 bits)

@ Implementation is simple and fast

e Programs are limited to 4096 instructions

e Only branch-forward instructions
e Programs are directed acyclic graphs (DAGs)

o Kernel can verify validity /safety of programs
e Program completion is guaranteed (DAGs)

e Simple instruction set = can verify opcodes and arguments

@ Can detect dead code

System Programming - Linux Containers ©2026 M. Kerrisk Seccomp 24-11 §24.2
Outline
24 Seccomp 24-1
24.3 The BPF virtual machine and BPF instructions 24-12

Key features of BPF virtual machine

@ Accumulator register (32-bit)
@ Data area (data to be operated on)
e In seccomp context: data area describes system call

@ All instructions are 64 bits, with a fixed format
e Expressed as a C structure:

struct sock_filter {

__ul6é code; /* Filter code (opcode)=*/

__u8 jt; /* Jump true */

__u8 jf; /* Jump false */

__u32 k; /* Multiuse field (operand) */

};

@ See <linux/filter.h> and <linux/bpf_common.h>

@ No state is preserved between BPF program invocations

e E.g., can't intercept n'th syscall of a particular type

.org

System Programming - Linux Containers ©2026 M. Kerrisk Seccomp 24-13 §24.3

BPF instruction set

Instruction set includes:
@ Load instructions (BPF_LD)
@ Store instructions (BPF_ST)

e There is a “working memory"” area where info can be stored
(not persistent)

@ Jump instructions (BPF_JMP)

@ Arithmetic/logic instructions (BPF_ALU)
o BPF_ADD, BPF_SUB, BPF_MUL, BPF_DIV, BPF_MOD, BPF_NEG

e BPF_OR, BPF_AND, BPF_XOR, BPF_LSH, BPF_RSH

@ Return instructions (BPF_RET)
e Terminate filter processing

e Report a status telling kernel what to do with syscall

.org

System Programming - Linux Containers ©2026 M. Kerrisk Seccomp 24-14 §24.3

BPF jump instructions

@ Conditional and unconditional jump instructions provided

@ Conditional jump instructions consist of
e Opcode specifying condition to be tested

e Value to test against

e Two jump targets
e jt: target if condition is true

e jf: target if condition is false
@ Conditional jump instructions:
e BPF_JEQ: jump if equal
e BPF_JGT: jump if greater
e BPF_JGE: jump if greater or equal
e BPF_JSET: bit-wise AND + jump if nonzero result
e jftarget = no need for BPF_{JNE,JLT,JLE,JCLEAR}

System Programming - Linux Containers ©2026 M. Kerrisk Seccomp 24-15 §24.3

BPF jump instructions

@ Targets are expressed as relative offsets in instruction list
o 0 == no jump (execute next instruction)

e jt and jf are 8 bits = 255 maximum offset for conditional
jumps

@ Unconditional BPF_JA (“jump always”) uses k as offset,
allowing much larger jumps

.org

System Programming - Linux Containers ©2026 M. Kerrisk Seccomp 24-16 §24.3

Seccomp BPF data area

@ Seccomp provides data describing syscall to filter program
e Buffer is read-only
@ l.e., seccomp filter can't change syscall or syscall arguments

@ Can be expressed as a C structure...

System Programming - Linux Containers ©2026 M. Kerrisk Seccomp 24-17 §24.3

Seccomp BPF data area

struct seccomp_data {

int nr; /* System call number (4 bytes) */
__u32 arch; /* AUDIT_ARCH_*x value */

__ub4 instruction_pointer; /* CPU IP x/

__ub4 argsl[6]; /* System call arguments */

@ nr: system call number (architecture-dependent); 4-byte int

@ arch: identifies architecture
e Constants defined in <linux/audit.h>
o AUDIT ARCH X86_64, AUDIT_ARCH_ARM, etc.

@ instruction_pointer: CPU instruction pointer

@ args: system call arguments
e System calls have maximum of six arguments

e Number of elements used depends on system call

.org

System Programming - Linux Containers ©2026 M. Kerrisk Seccomp 24-18 §24.3

Building BPF instructions

@ One could code BPF instructions numerically by hand...

@ But, header files define convenience macros (and symbolic
constants) to ease the task:

#define BPF_STMT(code, k) \
{ (unsigned short) (code), 0, 0, k }
#define BPF_JUMP(code, k, jt, jf) \
{ (unsigned short) (code), jt, jf, k }

These macros just plug values together to form sock_ filter

structure initializer

struct sock_filter {
__ul6 code; /* Filter code (opcode)x*/
__u8 jt; /* Jump true */
__u8 jf; /* Jump false */
__u32 k; /* Multiuse field (operand) */
};
System Programming - Linux Containers ©2026 M. Kerrisk Seccomp 24-19 §24.3

Building BPF instructions: examples

@ Load architecture number into accumulator

BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
offsetof (struct seccomp_data, arch))

@ Opcode here is constructed by ORing three values together:

@ Operand is architecture field of data area
e offsetof () yields byte offset of a field in a structure

.org

BPF_LD: load
BPF_W: operand size is a word (4 bytes)

BPF_ABS: address mode specifying that source of load is data

area (containing system call data)

See <linux/bpf_common.h> for definitions of opcode

constants

System Programming - Linux Containers ©2026 M. Kerrisk Seccomp

24-20 §24.3

Building BPF instructions: examples

@ Test value in accumulator

BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, AUDIT_ARCH_X86_64, 1, 0)

e BPF_JMP | BPF_JEQ: jump with test on equality
e BPF_K: value to test against is in generic multiuse field (k)
e k contains value AUDIT ARCH_X86 64

e jt value is 1, meaning skip one instruction if test is true

e jfvalue is 0, meaning skip zero instructions if test is false
@ l.e., continue execution at following instruction

System Programming - Linux Containers ©2026 M. Kerrisk Seccomp 24-21 §24.3

Building BPF instructions: examples

@ Return a value that causes kernel to kill process

BPF_STMT (BPF_RET | BPF_K, SECCOMP_RET_KILL_PROCESS)

@ Arithmetic/logic instruction: add one to accumulator

BPF_STMT (BPF_ALU | BPF_ADD | BPF_K, 1)

@ Arithmetic/logic instruction: right shift accumulator 12 bits

BPF_STMT (BPF_ALU | BPF_RSH | BPF_K, 12)

.org

System Programming - Linux Containers ©2026 M. Kerrisk Seccomp 24-22 §24.3

Outline

24 Seccomp 24-1

24.4 BPF filter return values 24-23

Filter return value

@ Once filter is installed, every syscall is tested against filter

@ Seccomp filter must return a value to kernel indicating
whether syscall is permitted
e Otherwise EINVAL when attempting to install filter

@ Return value is 32 bits, in two parts:

e Most significant 16 bits specify an action to kernel
e SECCOMP_RET_ACTION_FULL mask

e Least significant 16 bits specify “data” for return value
e SECCOMP_RET_DATA mask

#define SECCOMP_RET_ACTION_FULL Oxffff0000U
#define SECCOMP_RET_DATA 0x0000££f£ffU

.org

24-24 §24.4

System Programming - Linux Containers ©2026 M. Kerrisk Seccomp

Filter return action

Possible filter return actions include:
@ SECCOMP_RET ALLOW: system call is allowed to execute

@ SECCOMP_RET _KILL_ PROCESS (since Linux 4.14, 2017):
process (all threads) is immediately killed
e Terminated as though process had been killed with SIGSYS
@ There is no actual SIGSYS signal delivered, but...

e To parent (via wait()) it appears child was killed by SIGSYS
e Core dump is also produced

@ SECCOMP_RET ERRNO: return an error from system call
e System call is not executed
e Value in SECCOMP_RET DATA is returned in errno
e But, capped to 4095
@ There are other possible return actions....
o See seccomp(2) manual page

System Programming - Linux Containers ©2026 M. Kerrisk Seccomp 24-25 §24.4
Outline
24 Seccomp 24-1

24.5 Installing a BPF program 24-26

Installing a BPF program

@ A process installs a filter for itself using one of:
e seccomp (SECCOMP_SET_MODE_FILTER, flags, &fprog)
e Since Linux 3.17 (2014)

e Provides additional features unavailable with prctl/()

e prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER,
&fprog)
@ Legacy mechanism for installing seccomp filter

e &fprog is a pointer to a BPF program:

struct sock_fprog {
unsigned short len; /* Number of instructions */
struct sock_filter xfilter; /* Pointer to program
(array of instructions) */

.org

System Programming - Linux Containers ©2026 M. Kerrisk Seccomp 24-27 §24.5

Installing a BPF program

To install a filter, one of the following must be true:
o Caller is privileged (CAP_SYS_ADMIN in its user namespace)

@ Caller has set the no_new_privs process attribute:

prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);

e Per-thread attribute; once set, no_new_privs can't be unset

@ ! no new privs && ! CAP_SYS ADMIN =-
seccomp()/prctl(PR_SET_SECCOMP) fails with EACCES

.org

System Programming - Linux Containers ©2026 M. Kerrisk Seccomp 24-28 §24.5

Effect of no_new_privs process attribute

Effect of no _new privs process attribute:
@ In subsequent execve() calls:
e Causes set-UID and set-GID bits to be ignored

e Prevents file from conferring permitted capabilities to
process’

@ Prevents possibility of attacker starting privileged program
and manipulating it to misbehave using a seccomp filter

TMore precisely: after execve(), process permitted set will be intersection of
[process permitted set before execve()] and [file permitted set]

System Programming - Linux Containers ©2026 M. Kerrisk Seccomp 24-29 §24.5
Outline
24 Seccomp 24-1

24.6 BPF program examples 24-30

Example: seccomp/seccomp _deny open.c

int main(int argc, char *argv[]) {
prctl(PR_SET_NO_NEW_PRIVS, 1, 0, O, 0);

install_filter();
open("/tmp/a", O_RDONLY);

printf ("We shouldn't see this message\n");
exit (EXIT_SUCCESS) ;

QOO NOUIPdWN -

[N

}

Program installs a filter that prevents open() and openat() being
called, and then calls open()

@ Set no new _privs bit
@ Install seccomp filter

e Call open()

org

System Programming - Linux Containers ©2026 M. Kerrisk Seccomp 24-31 §24.6

Example: seccomp/seccomp_deny open.c

static void install filter(void) {
struct sock_filter filter[] = {

/* Architecture-check code not shown */

BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
offsetof (struct seccomp_data, nr)),

O~NO O PWN -

@ BPF filter program consists of a series of sock_filter structs

@ For now we ignore some BPF code that checks the
architecture that BPF program is executing on

o /\ This is an essential part of every BPF filter program
@ Load system call number into accumulator

@ (BPF program continues on next slide)

.org

System Programming - Linux Containers ©2026 M. Kerrisk Seccomp 24-32 §24.6

Example: seccomp/seccomp _deny open.c

#ifdef __NR_open /* Not all architectures have open() */
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, NR_open, 2, 0),
#endif
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, NR_openat, 1, 0),
BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_ALLOW),
BPF_STMT(BPF_RET | BPF_K, SECCOMP_ RET KILL PROCESS)

~NOoO O WwWwN -

};

@ Test if system call number matches _ NR_open
e True: advance 2 instructions = kill process
e False: advance O instructions = next test

o (open() is absent on some architectures, because it can be
implemented using openat())
@ Test if system call number matches __NR_openat
e True: advance 1 instruction = kill process

e False: advance 0 instructions = allow syscall
@ (Note: creat(), openat2(), + open_by_handle_at() are still not filtered)

.org

System Programming - Linux Containers ©2026 M. Kerrisk Seccomp 24-33 §24.6

Example: seccomp/seccomp_deny open.c

errExit ("seccomp") ;

1 struct sock_fprog prog = {

2 .len = sizeof(filter) / sizeof(filter[0]),

3 .filter = filter,

4 };

5

6 if (seccomp(SECCOMP_SET_MODE_FILTER, 0, &prog) == -1)
-

8

e Construct argument for seccomp()

@ Install filter

.org

System Programming - Linux Containers ©2026 M. Kerrisk Seccomp 24-34 §24.6

Example: seccomp/seccomp _deny open.c

Upon running the program, we see:

$./seccomp_deny_open
Bad system call # Message printed by shell
$ echo $7 # Display exit status of last command

159

@ "“Bad system call” was printed by shell, because it looks like
its child was killed by SIGSYS

o Exit status of 159 (== 128 + 31) also indicates termination
as though killed by SIGSYS
e Exit status of process killed by signal is 128 + signum

e SIGSYS is signal number 31 on this architecture
o (List signals and their numbers with: kill -1)

.org

System Programming - Linux Containers ©2026 M. Kerrisk Seccomp 24-35 §24.6

Example: seccomp/seccomp_control open.c

@ A more sophisticated example

o Filter based on flags argument of open() / openat()
e O_CREAT specified = kill process

e 0O_WRONLY or O_RDWR specified = cause call to fail with
ENOTSUP error

o flagsis arg. 2 of open(), and arg. 3 of openat():

int open(const char *pathname, int flags, ...);
int openat(int dirfd, const char *pathname, int flags, ...);

e flags serves exactly the same purpose for both calls

.org

System Programming - Linux Containers ©2026 M. Kerrisk Seccomp 24-36 §24.6

Example: seccomp/seccomp_control open.c

struct sock_filter filter[] = {
/* Architecture-check code not shown */

BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
offsetof (struct seccomp_data, nr)),

/* Is this an open() syscall? */
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, NR_open, 0, 2),
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
offsetof (struct seccomp_data, args([1])),
BPF_JUMP(BPF_JMP | BPF_JA, 3, 0, 0),
#endif

#ifdef __NR_open /* Not all architectures have open() */

@ Load system call number

@ For open(), load flags argument (args/1]) into accumulator,

and then skip to flags processing
o (Some architectures don’t have open())

.org

System Programming - Linux Containers ©2026 M. Kerrisk Seccomp

24-37 §24.6

Example: seccomp/seccomp_control open.c

/* Is this an openat() syscall? */
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, NR_openat, 1, 0),

BPF_STMT (BPF_RET | BPF_K, SECCOMP_RET_ALLOW),

BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
offsetof (struct seccomp_data, args([2])),

@ For openat(), load flags argument (args/2]) into accumulator

and continue to flags processing

@ Allow all other system calls

.org

System Programming - Linux Containers ©2026 M. Kerrisk Seccomp

24-38 §24.6

Example: seccomp/seccomp_control open.c

BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, O_CREAT, 0, 1),
BPF_STMT (BPF_RET | BPF_K, SECCOMP_RET_KILL_PROCESS),

BPF_STMT (BPF_RET | BPF_K, SECCOMP_RET_ALLOW)

};

BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, O_WRONLY | O_RDWR, O, 1),
BPF_STMT (BPF_RET | BPF_K, SECCOMP_RET_ERRNO | ENOTSUP),

Process flags value:

@ Test if 0 CREAT bit is set in flags
e True: skip 0 instructions = kill process

e False: skip 1 instruction

@ Test if 0 WRONLY or O_RDWR is set in flags
e True: cause call to fail with ENOTSUP error in errno

e False: allow call to proceed

.org

System Programming - Linux Containers ©2026 M. Kerrisk Seccomp

24-39 §24.6

Example: seccomp/seccomp_control open.c

int main(int argc, char *argv([]) {
prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
install filter();

if (open("/tmp/a", O_RDONLY)
perror ("openl") ;

if (open("/tmp/a", 0_WRONLY)
perror ("open2") ;

if (open("/tmp/a", 0_RDWR) == -1)
perror ("open3") ;

if (open("/tmp/a", O_CREAT | O_RDWR, 0600) == -1)
perror ("opend") ;

= -1)

= -1)

exit (EXIT_SUCCESS) ;

@ Test open() calls with various flags

.org

System Programming - Linux Containers ©2026 M. Kerrisk Seccomp

24-40 §24.6

Example: seccomp/seccomp_control open.c

$ touch /tmp/a

$./seccomp_control_open
open2: Operation not supported
open3: Operation not supported
Bad system call

$ echo $7

159

e First open() succeeded

@ Second and third open() calls failed
e Kernel produced ENOTSUP error for call

@ Fourth open() call caused process to be killed
o (159 == 128 + 31; SIGSYS is signal 31)

.org

System Programming - Linux Containers ©2026 M. Kerrisk Seccomp 24-41 §24.6
Outline
24 Seccomp 24-1

24.7 Checking the architecture 24-42

Checking the architecture

@ Checking architecture value should be first step in any BPF
program
@ Syscall numbers differ across architectures!
e May have built ssccomp BPF BLOB for one architecture, but
accidentally load it on different architecture
@ Hardware may support multiple system call conventions
o Modern x86 hardware supports three(!) architecture+ABI
conventions
e System call numbers may differ under each convention

e Similar issues occur on other platforms

e E.g., AArch64 can execute AArch32 code, but set of syscalls
differs somewhat on each architecture

System Programming - Linux Containers ©2026 M. Kerrisk Seccomp 24-43 §24.7

Checking the architecture: Intel architectures

@ E.g. modern Intel systems support x86-64, i386, and x32,
each of which has unique syscall numbers

o x86-64 (AUDIT_ARCH_X86_64): modern x86 arch. with
64-bit instructions, larger address space, richer register set

o i386 (AUDIT_ARCH_I386): historical 32-bit Intel arch. with
32-bit instruction set and address space

o x32 (Linux 3.4, 2012): use modern x86 arch. with 32-bit
pointers/long (not widely supported in distributions)

e Can result in more compact/faster code in some cases

e /\ Same arch value (AUDIT_ARCH_X86_64) as x86-64, but bit
30 (X32_SYSCALL_BIT) set in syscall number (nr)

@ Checking arch in each filter invocation is essential because
architecture may change over life of process (execve())

e Interesting experiment in seccomp/seccomp_multiarch.c

org

System Programming - Linux Containers ©2026 M. Kerrisk Seccomp 24-44 §24.7

Checking the architecture: Intel x86-64

struct sock_filter filter[] = {
BPF_STMT(BPF_LD | BPF_W | BPF_ABS, offsetof(struct seccomp_data,arch)),

BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, AUDIT_ARCH_X86_64, 0, 2),

BPF_STMT(BPF_LD | BPF_W | BPF_ABS, offsetof (struct seccomp_data, nr)),

#define X32_SYSCALL_BIT 0x40000000
BPF_JUMP(BPF_JMP | BPF_JGE | BPF_K, X32_SYSCALL_BIT, 0, 1),

BPF_STMT (BPF_RET | BPF_K, SECCOMP_RET_KILL_PROCESS),

/* Further BPF code... */

@ Load architecture; kill process if not as expected

@ Load system call number; kill process if this is an x32 system
call (bit 30 is set)

.org

System Programming - Linux Containers ©2026 M. Kerrisk Seccomp 24-45 §24.7

Checking the architecture: AArch64

struct sock_filter filter[] = {
BPF_STMT(BPF_LD | BPF_W | BPF_ABS, offsetof(struct seccomp_data,arch)),

BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, AUDIT_ARCH_AARCH64, 1, 0),
BPF_STMT (BPF_RET | BPF_K, SECCOMP_RET_KILL_PROCESS),

/* Further BPF code... */

@ Load architecture; kill process if not as expected

.org

System Programming - Linux Containers ©2026 M. Kerrisk Seccomp 24-46 §24.7

Outline

24 Seccomp 24-1

24.8 Exercises 24-47

Notes for online practical sessions

@ Small groups in breakout rooms

e Write a note into the Discord #general channelif you have a
preferred group

e We will go faster, if groups collaborate on solving the
exercise(s)

e You can share a screen in your room
@ | will circulate regularly between rooms to answer questions
@ Zoom has an “Ask for help” button...
@ Keep an eye on the Discord #general channel

e Perhaps with further info about exercise;

e Or a note that the exercise merges into a break

@ When your room has finished, write a message in the Discord
#tgeneral channel: “*** Room X has finished ***”

e Then | have an idea of how many people have finished

org

System Programming - Linux Containers ©2026 M. Kerrisk Seccomp 24-43 §24.8

Shared screen etiquette

@ It may help your colleagues if you use a larger than normal font!
@ In many environments (e.g., xterm, VS Code), we can adjust the
font size with Control+Shift+"“+" and Control+"“-"

e Or (e.g., emacs) hold down Control key and use mouse wheel

@ Long shell prompts make reading your shell session difficult
@ Use PS1='§ ' or PS1="# '

@ Low contrast color themes are difficult to read; change this if you can

@ Turn on line numbering in your editor
@ In vim / neovim use: :set number

@ In emacs use: M-x display-line-numbers-mode <RETURN>
@ M-x means Left-Alt+x

@ For collaborative editing, relative line-numbering is evil....
@ In vim / neovim use: :set nornu

@ In emacs, the following should suffice:

M-: (display-line-numbers-mode) <RETURN>
M-: (setq display-line-numbers 'absolute) <RETURN>

@ M-: means Left-Alt+4+Shift+:

.org

System Programming - Linux Containers ©2026 M. Kerrisk Seccomp 24-49 §24.8

Using tmate in in-person practical sessions

In order to share an X-term session with others, do the following:

@ Enter the command tmate in an X-term, and you'll see the following:

$ tmate

Connecting to ssh.tmate.io...

Note: clear your terminal before sharing readonly access
web session read only: .

ssh session read only: ssh SOmErAnDOm5TriNg@lonl.tmate.io
web session: ...

ssh session: ssh SOmEoTheRrAnDOm5Tr1Ng@lonl.tmate.io

@ Share last “ssh” string with colleague(s) via a text channel

@ Or: "ssh session read only" string gives others read-only access
@ Your colleagues should paste that string into an X-term...

@ Now, you are sharing an X-term session in which anyone can type

e Any "mate" can cut the connection to the session with the
3-character sequence <ENTER> ~ .

@ To see above message again: tmate show-messages

.org

System Programming - Linux Containers ©2026 M. Kerrisk Seccomp 24-50 §24.8

Exercises

@ Extend the filter in seccomp/seccomp_control_open.c so that if O_TRUNC is
specified in the flags argument, the call fails with the error EACCES, and adjust
main() to test for this case.

@ Write a program ([template: seccomp/ex.seccomp_no_children.c], and you will
need to edit the EXERCISE_FILES_EXE line in the Makefile so that it builds this
program) that installs a filter that denies execution of fork(), clone(), and clone3(),
causing fork() to fail with ENOTSUP, clone() to fail with EPERM, and clone3() to fail
with EACCES. (Note: there is no fork() system call on certain architectures, such as
AArch64, so you should not include try to filter for fork() calls on those
architectures.) The program should support the following command-line arguments:

./ex.seccomp_no_children prog arg...

Having installed the filter, the program should then exec() prog with the supplied
arguments. Obviously, an interesting program to exec() is one that employs fork() or
clone(). Try executing the procexec/zombie.c program (which calls fork()). What
error does the program fail with? (Read VERSIONS (or NOTES) in fork(2) to

understand why.)

Q Extend the seccomp/seccomp_deny_open.c program so that it also denies
the creat(), openat2(), and open_by_handle_at() system calls.

.org

System Programming - Linux Containers ©2026 M. Kerrisk Seccomp 24-51 §24.8

Outline
24 Seccomp 24-1

24.9 Productivity aids (/ibseccomp and other tools) 24-52

