
Linux/UNIX System Programming Fundamentals

Signals: Signal Handlers

Michael Kerrisk, man7.org © 2026

mtk@man7.org

January 2026

Outline Rev: # d49d0b54be95

10 Signals: Signal Handlers 10-1
10.1 Async-signal-safe functions 10-3
10.2 Exercises 10-11
10.3 Interrupted system calls 10-15
10.4 SA_SIGINFO signal handlers 10-19
10.5 The signal trampoline 10-23



Outline
10 Signals: Signal Handlers 10-1
10.1 Async-signal-safe functions 10-3
10.2 Exercises 10-11
10.3 Interrupted system calls 10-15
10.4 SA_SIGINFO signal handlers 10-19
10.5 The signal trampoline 10-23

Reentrancy

Signal handler can interrupt a program at any moment
⇒ with respect to shared data (global variables), handler and
main program are semantically equivalent to two
simultaneous flows of execution inside process

Like two “threads”, but not the same as POSIX threads
(handler does not execute in parallel with main program)

A function is reentrant if it can safely be simultaneously
executed by multiple threads

Safe == function achieves same result regardless of state of
other threads (flows) of execution

[TLPI §21.1.2]
System Programming Fundamentals ©2026 M. Kerrisk Signals: Signal Handlers 10-4 §10.1



Nonreentrant functions

Functions that update global/static variables are not reentrant;
examples:

Some functions by their nature operate on global data
e.g., malloc() and free() maintain a global linked list of free
memory blocks

Suppose main program is executing malloc() and is
interrupted by a signal handler that also calls malloc()...
Two “threads” updating linked list at same time ⇒ chaos!

Functions that use static data structures for internal
bookkeeping are nonreentrant

e.g., stdio functions do this for buffered I/O
stdio stream has buffer + pointers / counters

C library is rife with nonreentrant functions!
Manual pages usually give some indication that functions
that are nonreentrant

System Programming Fundamentals ©2026 M. Kerrisk Signals: Signal Handlers 10-5 §10.1

Async-signal-safe functions

An async-signal-safe function is one that can be safely called
from a signal handler
A function can be async-signal-safe because either

It is reentrant
It is not interruptible by a signal handler

(Atomic with respect to signals)

POSIX specifies a set of functions required to be
async-signal-safe

See signal-safety(7) or TLPI Table 21-1
Set is a minority of functions specified in POSIX

~190 out of ~1175 functions in POSIX.1-2008/SUSv4

No guarantees about functions not on the list
" stdio functions are not on the list

[TLPI §21.1.2]
System Programming Fundamentals ©2026 M. Kerrisk Signals: Signal Handlers 10-6 §10.1



Signal handlers and async-signal-safety

Executing a function inside a signal handler is unsafe only if
handler interrupted execution of an unsafe function
⇒ Two choices:

1 Ensure that signal handler calls only async-signal-safe
functions

2 Main program blocks signals when calling unsafe functions or
working with global data also used by handler

Second choice can be difficult to implement in complex
programs

⇒ Simplify rule: call only async-signal-safe functions inside a
signal handler

System Programming Fundamentals ©2026 M. Kerrisk Signals: Signal Handlers 10-7 §10.1

Signal handlers can themselves be nonreentrant

" Signal handler can also be nonreentrant if it updates
global data used by main program
A common case: handler calls functions that update errno
Solution:
void handler(int sig)
{

int savedErrno = errno;

/* Execute functions that might modify errno */

errno = savedErrno;
}

System Programming Fundamentals ©2026 M. Kerrisk Signals: Signal Handlers 10-8 §10.1



The sig_atomic_t data type

Contradiction:
Good design: handler sets global flag checked by main()
Sharing global variables between handler & main() is unsafe

Because accesses may not be atomic

Even on x86, we can make nonatomic integers with a bit of
effort; for example:

Operating on a 64-bit integer on x86-32 platform
(signals/nonatomic_uint64.c)
Operating on an integer (unnaturally) aligned across
cache-line boundary (threads/nonatomic.c)

E.g., handler is called in one thread while integer is accessed
in another thread

[TLPI §21.1.3]
System Programming Fundamentals ©2026 M. Kerrisk Signals: Signal Handlers 10-9 §10.1

The sig_atomic_t data type

POSIX defines an integer data type that can be safely shared
between handler and main() :

sig_atomic_t
Range: SIG_ATOMIC_MIN..SIG_ATOMIC_MAX (<stdint.h>)
Read and write guaranteed atomic
" Other operations (e.g., ++ and --) not guaranteed
atomic (i.e., not safe)
Specify volatile qualifier to prevent optimizer tricks
volatile sig_atomic_t flag;

System Programming Fundamentals ©2026 M. Kerrisk Signals: Signal Handlers 10-10 §10.1



Outline
10 Signals: Signal Handlers 10-1
10.1 Async-signal-safe functions 10-3
10.2 Exercises 10-11
10.3 Interrupted system calls 10-15
10.4 SA_SIGINFO signal handlers 10-19
10.5 The signal trampoline 10-23

Exercises

1 Examine the source code of the program signals/unsafe_printf.c,
which can be used to demonstrate that calling printf() both from the
main program and from a signal handler is unsafe. The program
performs the following steps:

Establishes a handler for the SIGINT signal (the control-C signal).
The handler uses printf() to print out the string “sssss\n”.
After the main program has established the signal handler, it
pauses until control-C is pressed for the first time, and then loops
forever using printf() to print out the string “mmmmm\n”

Before running the program, start up two shells in separate terminal
windows as follows (the ls command will display an error until the
out.txt file is actually created):
$ watch ps -C unsafe_printf

$ cd signals
$ watch ls -l out.txt

System Programming Fundamentals ©2026 M. Kerrisk Signals: Signal Handlers 10-12 §10.2



Exercises

In another terminal window, run the unsafe_printf program, directing
stdout to a disk file (this causes stdout to be block buffered), and then
hold down the control-C key continuously:
$ cd signals
$ ./unsafe_printf > out.txt
^C^C^C

Observe the results from the watch commands in the other two terminal
windows. After some time, it is likely that you will see that the file
stops growing in size, and that the program ceases consuming CPU
time because of a deadlock in the stdio library. Even if this does not
happen, after holding the control-C key down for 15 seconds, kill the
program using control-\ (or Control-4).

Inside the out.txt file, there should in theory be only lines that
contain “mmmmm\n” or “sssss\n”. However, because of unsafe
executions of printf(), it is likely that there will be lines containing other
strings. Verify this using the following command:
$ grep -E -n -v '^(mmmmm|sssss)$' < out.txt

System Programming Fundamentals ©2026 M. Kerrisk Signals: Signal Handlers 10-13 §10.2

Exercises

2 Examine the source code of signals/unsafe_malloc.c, which can be
used to demonstrate that calling malloc() and free() from both the
main program and a signal handler is unsafe. Within this program, a
handler for SIGINT allocates multiple blocks of memory using malloc()
and then frees them using free(). Similarly, the main program contains
a loop that allocates multiple blocks of memory and then frees them.

In one terminal window, run the following command:
$ watch -n 1 ps -C unsafe_malloc

In another terminal window, run the unsafe_malloc program, and then
hold down the control-C key until either:

you see the program crash with a corruption diagnostic from
malloc() or free() ; or
the ps command shows that the amount of CPU time consumed by
the process has ceased to increase, indicating that the program has
deadlocked inside a call to malloc() or free().

System Programming Fundamentals ©2026 M. Kerrisk Signals: Signal Handlers 10-14 §10.2



Outline
10 Signals: Signal Handlers 10-1
10.1 Async-signal-safe functions 10-3
10.2 Exercises 10-11
10.3 Interrupted system calls 10-15
10.4 SA_SIGINFO signal handlers 10-19
10.5 The signal trampoline 10-23

Interrupted system calls

What if a signal handler interrupts a blocked system call?
Example:

Install handler for (say) SIGALRM
Perform a read() on terminal that blocks, waiting for input
SIGALRM is delivered
What happens when handler returns?

read() fails, returning –1 with errno set to EINTR
(“interrupted system call”)
Can deal with this by manually restarting call:
while ((cnt = read(fd, buf, BUF_SIZE)) == -1 && errno == EINTR)

continue; /* Do nothing loop body */

if (cnt == -1) /* Error other than EINTR */
errExit("read");

[TLPI §21.5]
System Programming Fundamentals ©2026 M. Kerrisk Signals: Signal Handlers 10-16 §10.3



Automatically restarting system calls: SA_RESTART

Specifying SA_RESTART in sa_flags when installing a handler
causes system calls to automatically restart

SA_RESTART is a per-signal flag
More convenient than manually restarting, but...

Not all system calls automatically restart
Set of system calls that restart varies across UNIX systems
(Origin of variation is historical)

System Programming Fundamentals ©2026 M. Kerrisk Signals: Signal Handlers 10-17 §10.3

Automatically restarting system calls: SA_RESTART

Most (all?) modern systems restart at least:
wait(), waitpid()
I/O system calls on “slow devices”

i.e., devices where I/O can block (pipes, sockets, ...)
read(), readv(), write(), writev()

On Linux:
Certain other system calls also automatically restart
Remaining system calls never restart, regardless of
SA_RESTART
See TLPI §21.5 and signal(7) for details

Bottom line: If you need cross-system portability, omit
SA_RESTART and always manually restart

System Programming Fundamentals ©2026 M. Kerrisk Signals: Signal Handlers 10-18 §10.3



Outline
10 Signals: Signal Handlers 10-1
10.1 Async-signal-safe functions 10-3
10.2 Exercises 10-11
10.3 Interrupted system calls 10-15
10.4 SA_SIGINFO signal handlers 10-19
10.5 The signal trampoline 10-23

Receiving extra signal information: SA_SIGINFO

Specifying SA_SIGINFO in sa_flags argument of sigaction()
causes signal handler to be invoked with extra arguments
Handler declared as:
void handler(int sig, siginfo_t *siginfo, void *ucontext);

sig is the signal number
siginfo points to structure returning extra info about signal
ucontext is rarely used (no portable uses)

See getcontext(3) and swapcontext(3)

[TLPI §21.4]
System Programming Fundamentals ©2026 M. Kerrisk Signals: Signal Handlers 10-20 §10.4



Receiving extra signal information: SA_SIGINFO

Handler address is passed via act.sa_sigaction field (not the
usual act.sa_handler)
struct sigaction act;

act.sa_sigaction = handler;
act.sa_flags = SA_SIGINFO;
sigemptyset(&act.sa_mask);
sigaction(SIGINT, &act, NULL);

System Programming Fundamentals ©2026 M. Kerrisk Signals: Signal Handlers 10-21 §10.4

The siginfo_t data type

siginfo_t is a structure containing additional info about
delivered signal; fields include:

si_signo : signal number (same as first arg. to handler)
si_code : additional info about cause of signal
si_pid : PID of process sending signal (if sent by a process)
si_uid : real UID of sending process (if sent by a process)
si_value : data accompanying realtime signal sent with
sigqueue()
And other signal-type-specific fields, such as:

si_addr : memory location that caused fault; filled in for
hardware-generated signals (SIGSEGV, SIGFPE, etc.)
si_fd : FD that generated a signal (signal-driven I/O)

See sigaction(2) and TLPI §21.4 for more information

System Programming Fundamentals ©2026 M. Kerrisk Signals: Signal Handlers 10-22 §10.4



Outline
10 Signals: Signal Handlers 10-1
10.1 Async-signal-safe functions 10-3
10.2 Exercises 10-11
10.3 Interrupted system calls 10-15
10.4 SA_SIGINFO signal handlers 10-19
10.5 The signal trampoline 10-23

The problem

Before executing signal handler, kernel must modify some
kernel-maintained process context

Signal mask, signal stack (sigaltstack())
(Registers will also be modified during handler execution, and
so must be saved)
Easy, because kernel has control at this point

Upon return from signal handler, previous context must be
restored

But, at this point we are in user mode; kernel has no control
How does kernel regain control in order to restore
context?

⇒ the “signal trampoline”

System Programming Fundamentals ©2026 M. Kerrisk Signals: Signal Handlers 10-24 §10.5



The “signal trampoline”

main program

signal

handler

return

trampoline

sigreturn()

interrupt handler completes

(kernel reschedules process)

signal is pending!

save context + build frame

for handler in user space

restore context

return from interrupt

hardware interrupt

User space Kernel space

The kernel uses the signal trampoline to arrange that control is
bounced back to kernel after execution of signal handler

System Programming Fundamentals ©2026 M. Kerrisk Signals: Signal Handlers 10-25 §10.5

When is a signal delivered?

In a moment, we consider what’s required to execute a signal
handler
But first of all, when is a signal delivered?

Signals are asynchronously delivered to process, but...
Only on transitions from kernel space back to user space

System Programming Fundamentals ©2026 M. Kerrisk Signals: Signal Handlers 10-26 §10.5



Steps in the execution of a signal handler

The following steps occur in the execution of a signal handler:
A hardware interrupt occurs

E.g., scheduler timer interrupt, or syscall trap instruction
Process is scheduled off CPU
Kernel gains control & receives various process context info,
which it saves

E.g., register values (program counter, stack pointer, etc.)

Upon completion of interrupt handling, kernel resumes
execution of a process, and discovers it has a pending signal

This happens:
Upon return from a system call; or
When the kernel chooses a process to schedule after a
scheduler timer interrupt

System Programming Fundamentals ©2026 M. Kerrisk Signals: Signal Handlers 10-27 §10.5

Steps in the execution of a signal handler

To allow signal to be handled, the kernel:
Saves process context information onto user-space stack

Context == CPU registers (PC, SP), signal mask, and more
Saved context will be used later by sigreturn()...
See, e.g., struct rt_sigframe definition in
arch/x86/include/asm/sigframe.h
Saved context information is visible via third argument of SA_SIGINFO
handler, which is really ucontext_t * ; see also ucontext_t definition in
<sys/ucontext.h>

Constructs frame on user-space stack for signal handler
Sets return address in frame to point to “signal trampoline”

Rearranges trap return address so that upon return to user
space, control passes to signal handler

Control returns to user space
Handler is called; handler returns to trampoline

System Programming Fundamentals ©2026 M. Kerrisk Signals: Signal Handlers 10-28 §10.5



Steps in the execution of a signal handler

Trampoline code calls sigreturn(2)
Now, the kernel once more has control!
sigreturn() restores signal context

Signal mask, alternate signal stack
sigreturn() restores saved registers

Including program counter ⇒ next return to user space will
resume execution where handler interrupted main program

Info needed by sigreturn() to do its work was saved earlier on
user-space stack

For example, see code of, and calls to, setup_sigcontext() and
restore_sigcontext() in kernel source file arch/x86/kernel/signal.c

Trampoline code is in user space (in C library or vdso(7))
If in C library, address is made available to kernel via
sa_restorer field (done by sigaction() wrapper function)

System Programming Fundamentals ©2026 M. Kerrisk Signals: Signal Handlers 10-29 §10.5

sigreturn()

sigreturn() :
Special system call used only by signal trampoline
Uses saved context to restore state and resume program
execution at point where it was interrupted by handler

Frame of

interrupted function

in main program

Signal context

(Saved registers,

signal mask, etc.)

Frame for

signal handler

1. Stack while

signal handler

is executing

Frame of

interrupted function

in main program

Signal context

(Saved registers,

signal mask, etc.)

2. Stack upon

return into

trampoline code

Frame of

interrupted function

in main program

3. Stack after

sigreturn() completes

and main resumes

System Programming Fundamentals ©2026 M. Kerrisk Signals: Signal Handlers 10-30 §10.5


