Linux/UNIX System Programming Fundamentals

File 1/0

Michael Kerrisk, man7.org © 2026

mtk@man7.org

January 2026

Outline
3 Filel/O 3-1
3.1 File I/O overview 3-3
3.2 open(), read(), write(), and close() 3-8
3.3 APl summary 3-20

3.4 Exercises

3-22

Outline

3 File I/O 3-1
3.1 File I/O overview 3-3
Files
@ “On UNIX, everything is a file"
e More correctly: “everything is a file descriptor”
@ Note: the term file can be ambiguous:
e A generic term, covering disk files, directories, sockets,
FIFOs, terminals and other devices and so on
e Or specifically, a disk file in a filesystem
e To clearly distinguish the latter, the term regular file is
sometimes used
System Programming Fundamentals ©2026 M. Kerrisk File /O 3-4 §31

System calls versus stdio

e C programs usually use stdio package for file /O

@ Library functions layered on top of 1/O system calls

System calls

Library functions

file descriptor (int)
open(), close()
Iseek()

read()

write()

file stream (FILE *)
fopen(), fclose()

fseek(), ftell()

fgets(), fscanf(), fread() ...
fputs(), fprintf(), fwrite(), ...

feof(), ferror()

@ We presume understanding of stdio; = focus on system calls

System Programming Fundamentals ©2026 M. Kerrisk File |/O

35 §3.1

File descriptors

@ All 1/0 is done using file descriptors (FDs)

@ nonnegative integer that identifies an open file

@ Used for all types of files

e terminals, regular files, pipes, FIFOs, devices, sockets, ...

@ 3 FDs are normally available to programs run from shell:
o (POSIX names are defined in <unistd.h>)

FD Purpose POSIX name | stdio stream
0 Standard input | STDIN FILENO stdin
1 | Standard output | STDOUT FILENO stdout
2 Standard error | STDERR_FILENO stderr
System Progra‘mr,n(iing Fundamentals ©2026 M. Kerrisk File /O 3-6 §3.1

Key file 1/O system calls

Four fundamental calls:
@ open(): open a file, optionally creating it if needed
e Returns file descriptor used by remaining calls

@ read(): input
e write(): output

@ close(): close file descriptor

System Programming Fundamentals ©2026 M. Kerrisk File 1/0 3-7 8§31
Outline
3 File 1/0 3-1

3.2 open(), read(), write(), and close() 3-8

open(): opening a file

#include <sys/stat.h>
#include <fcntl.h>
int open(const char *pathname, int flags, ... /* mode_t mode */);

@ Opens existing file / creates and opens new file
@ Arguments:
e pathname identifies file to open

e flags controls semantics of call
@ e.g., open an existing file vs create a new file

e mode specifies permissions when creating new file

@ Returns: a file descriptor (nonnegative integer)
o (Guaranteed to be lowest available FD)

[TLPI §4.3]

.org

System Programming Fundamentals ©2026 M. Kerrisk File 1/0 3-9 §32

open() flags argument

flags is formed by ORing (|) together:
@ Access mode
e Specify exactly one of 0_RDONLY, O_WRONLY, or O_RDWR

@ File creation flags (bit flags)
o File status flags (bit flags)

[TLPI §4.3.1]

.org

System Programming Fundamentals ©2026 M. Kerrisk File /O 3-10 §3.2

File creation flags

@ File creation flags:
o Affect behavior of open() call
e Can't be retrieved or changed

@ Examples:
o 0O _CREAT: create file if it doesn’t exist
@ mode argument must be specified

e Without O_CREAT, can open only an existing file (else:

ENOENT)

e 0_EXCL: create “exclusively”
e Give an error (EEXIST) if file already exists

@ Only meaningful with 0_CREAT

e O_TRUNC: truncate existing file to zero length
e l.e., discard existing file content

.org

System Programming Fundamentals ©2026 M. Kerrisk File 1/0 3-11 §3.2
File status flags
e File status flags:
o Affect semantics of subsequent file /O
o Can be retrieved and modified using fentl()
@ Examples:
e O_APPEND: always append writes to end of file
o 0_NONBLOCK: nonblocking 1/0
System Progra%m%lng Fundamentals ©2026 M. Kerrisk File /O 3-12 §3.2

open() examples

@ Open existing file for reading:

fd = open("script.txt", O_RDONLY);

@ Open file for read-write, create if necessary, ensure we are
creator:

fd = open("myfile.txt", O_CREAT | O_EXCL | O_RDWR,
S_IRUSR | S_IWUSR); /* rw-—-————- */

@ Open file for writing, creating if necessary:

fd = open("myfile.txt", O_CREAT | O_WRONLY, S_IRUSR);

e File opened for writing, but created with only read
permission!

System Programming Fundamentals ©2026 M. Kerrisk File 1/0 3-13 §3.2

read(): reading from a file

#include <unistd.h>
ssize_t read(int fd, void *buffer, size_t count);

@ fd: file descriptor
@ buffer: pointer to buffer to store data

@ count: number of bytes to read
o (buffer must be at least this big)

o (ssize_t and size_t are signed and unsigned integer types)

@ Returns:
e > 0: number of bytes read
e May be < count (e.g., terminal read() gets only one line)

e 0: end of file
e —1: error

e /\ No terminating null byte is placed at end of buffer

System Programming Fundamentals ©2026 M. Kerrisk File /O 3-14 8§32

write(): writing to a file

#include <unistd.h>
ssize_t write(int fd, const void *buffer, size_t count);

e fd: file descriptor
@ buffer: pointer to data to be written

@ count: number of bytes to write

@ Returns:
e Number of bytes written

e May be < count (a “partial write")
(e.g., write fills device, or insufficient space to write entire
buffer to nonblocking socket)

e —1 on error

org

System Programming Fundamentals ©2026 M. Kerrisk File 1/0 3-15 §3.2

close(): closing a file

#include <unistd.h>
int close(int fd);

@ fd: file descriptor
@ Returns:

e 0: success

e —1: error

@ Really should check for error!
e Accidentally closing same FD twice
o l.e., detect program logic error

o Filesystem-specific errors
e E.g., NFS commit failures may be reported only at close()

e Note: close() always releases FD, even on failure return
o See close(2) manual page

.org

System Programming Fundamentals ©2026 M. Kerrisk File /O 3-16 §3.2

Example: copy.c

$./copy old-file new-file

@ A simple version of ¢cp(1)

.org

System Programming Fundamentals ©2026 M. Kerrisk File 1/0 3-17 §3.2
Example: fileio/copy.c
Always remember to handle errors!
1| #define BUF_SIZE 1024
2| char buf [BUF_SIZE];
3
4| int infd = open(argv[1], O_RDONLY);
5/if (infd == -1) errExit("open %s", argv[i]);
6
7| int flags = O_CREAT | O_WRONLY | O_TRUNC;
8|/mode_t mode = S_IRUSR | S_IWUSR | S_IRGRP; /* ru-r-—--—- */
9| int outfd = open(argv[2], flags, mode);
10| if (outfd == -1) errExit("open %s", argv[2]);
11
12| ssize_t nread;
13| while ((nread = read(infd, buf, BUF_SIZE)) > 0)
14 if (write(outfd, buf, nread) !'= nread)
15 fatal("write() returned error or partial write occurred");
16| if (nread == -1) errExit("read");
17
18| if (close(infd) == -1) errExit("close");
19| if (close(outfd) == -1) errExit("close");
.org
System Programming Fundamentals ©2026 M. Kerrisk File /O 3-18 §3.2

Universality of |/O

@ The fundamental 1/O system calls work on almost all file
types:

$ 1s > mylist
$./copy mylist new # Regular file

$./copy mylist /dev/tty # Device

$ mkfifo f # FIFO
$ cat f & # (reads from FIFO)
$./copy mylist £ # (writes to FIFO)
System Programming Fundamentals ©2026 M. Kerrisk File 1/0 3-19 §3.2
Outline
3 File 1/0 3-1

3.3 APl summary 3-20

APl summary

int open(const char *pathname, int flags, ... /* mode_t mode */);
// Returns a file descriptor

ssize_t read(int fd, void *buffer, size_t count);
// Returns: # of bytes actually read or O for EOF

ssize_t write(int fd, const void *buffer, size_t count);
// Returns: # of bytes actually written

int close(int fd);

.org

System Programming Fundamentals ©2026 M. Kerrisk File /O 3-21 8§33

Outline

3 File /O 3-1

3.4 Exercises 3-22

Notes for online practical sessions

@ Small groups in breakout rooms

e Write a note into the Discord #general channelif you have a
preferred group

e We will go faster, if groups collaborate on solving the
exercise(s)

e You can share a screen in your room
@ | will circulate regularly between rooms to answer questions
@ Zoom has an “Ask for help” button...

@ Keep an eye on the Discord #general channel
e Perhaps with further info about exercise;

e Or a note that the exercise merges into a break

@ When your room has finished, write a message in the Discord
#general channel: “*** Room X has finished ***”

e Then | have an idea of how many people have finished

System Programming Fundamentals ©2026 M. Kerrisk File 1/0 3-23 8§34

Shared screen etiquette

@ It may help your colleagues if you use a larger than normal font!
@ In many environments (e.g., xterm, VS Code), we can adjust the

font size with Control+4Shift+"+" and Control+"-
@ Or (e.g., emacs) hold down Control key and use mouse wheel

@ Long shell prompts make reading your shell session difficult
o Use PS1='§ ' or PS1="# '

@ Low contrast color themes are difficult to read; change this if you can

@ Turn on line numbering in your editor
@ In vim / neovim use: :set number

@ In emacs use: M-x display-line-numbers-mode <RETURN>
@ M-x means Left-Alt+x

@ For collaborative editing, relative line-numbering is evil....
@ In vim / neovim use: :set nornu

@ In emacs, the following should suffice:

M-: (display-line-numbers-mode) <RETURN>
M-: (setq display-line-numbers 'absolute) <RETURN>

@ M-: means Left-Alt+4Shift+:

org

System Programming Fundamentals ©2026 M. Kerrisk File /O 3-24 8§34

Using tmate in in-person practical sessions

In order to share an X-term session with others, do the following:

@ Enter the command tmate in an X-term, and you'll see the following:

$ tmate

Connecting to ssh.tmate.io...

Note: clear your terminal before sharing readonly access
web session read only: ...

ssh session read only: ssh SOmErAnDOm5TriNg@lonl.tmate.io
web session: ...

ssh session: ssh SOmEoTheRrAnDOm5Tr1Ng@lonl.tmate.io

@ Share last “ssh” string with colleague(s) via a text channel

@ Or: "ssh session read only" string gives others read-only access
@ Your colleagues should paste that string into an X-term...

@ Now, you are sharing an X-term session in which anyone can type

@ Any "mate" can cut the connection to the session with the
3-character sequence <ENTER> ~ .

@ To see above message again: tmate show-messages

.org

System Programming Fundamentals ©2026 M. Kerrisk File 1/0 3-25 8§34

Exercise notes

@ For many exercises, there are templates for the solutions

o Filenames: ex.*.c

e Look for FIXMEs to see what pieces of code you must add

o /\ You will need to edit the corresponding Makefile to add
a new target for the executable

@ Look for the EXERCISE_FILES_EXE macro

-EXERCISE_FILES_EXE
+EXERCISE_FILES_EXE

ex.prog_a ex.prob_b
ex.prog_a # ex.prog_b

@ Get a make tutorial now if you need one

.org

System Programming Fundamentals ©2026 M. Kerrisk File /O 3-26 §3.4

Exercises

©Q Using open(), close(), read(), and write(), implement the command
tee [-a] file ([template: fileio/ex.tee.c]). This command
writes a copy of its standard input to standard output and to file. If
file does not exist, it should be created. If file already exists, it
should be truncated to zero length (0_TRUNC). The program should
support the —a option, which appends (0_APPEND) output to the file if
it already exists, rather than truncating the file.

Some hints:
@ You can build ../1ibtlpi.a by doing make in source code root directory.
@ Standard input & output are automatically opened for a process.
@ Remember that you will need to add a target in the Makefile!
(*]

After first doing some simple command-line testing, test using the unit test in
the Makefile: make tee_test.

@ Why does “man open” show the wrong manual page? It finds a page in the
wrong section first. Try “man 2 open” instead.

@ while inotifywait -q . ; do echo -e '\n\n'; make; done
@ You may need to install the inotify-tools package

@ Command-line options can be parsed using getopt(3).

.org

System Programming Fundamentals ©2026 M. Kerrisk File 1/0 3-27 8§34

