
Outline
20 Internet Domain Sockets: Address Conversion 20-1
20.1 Host addresses and port numbers 20-3
20.2 Host and service conversion 20-6
20.3 Exercises 20-24
20.4 Internet domain sockets example with getaddrinfo() 20-26
20.5 API summary 20-39
20.6 Exercises 20-41

A simple concurrent server design

Simplest way to implement a concurrent server is to create a
new child process to handle each client
lfd = socket(...);
bind(lfd, ...);
listen(lfd, backlog);
for (;;) {

cfd = accept(lfd, ...);
switch (fork()) {
case -1:

errExit("fork");
case 0: /* CHILD */

close(lfd); /* Not needed in child */
handleRequest(cfd);
exit(EXIT_SUCCESS); /* Closes cfd */

default: /* PARENT */
break; /* Falls through */

}
close(cfd); /* Parent doesn't need cfd */

}

Also need a SIGCHLD handler to reap terminated children

Linux/UNIX System Programming ©2026 M. Kerrisk Internet Domain Sockets: Address Conversion 20-42 §20.6

Exercises

1 Implement the following server [template: sockets/ex.is_shell_sv.c]:

is_shell_sv <port>

The server creates a socket that listens on the specified port and accepts client
requests containing shell commands. (" Each client sends just one command to the
server.) The server handles clients concurrently, executing each client’s command,
and passing the results back across the client’s socket.
Some hints:

To keep things simple, the server should obtain the client command by doing a
single read() (not my readLine() function!) with a large buffer, and assume
that whatever is read is the complete command.

A more sophisticated solution would involve the use of shutdown(fd,
SHUT_WR) (covered later) in the client, and a loop in the server which
reads until end-of-file.

Remember that read() does not null-terminate the returned buffer!
To have the command send stdout and stderr to the socket, use dup2().
Easy execution of a shell command:
execl("/bin/sh", "sh", "-c", cmd, (char *) NULL);

Linux/UNIX System Programming ©2026 M. Kerrisk Internet Domain Sockets: Address Conversion 20-43 §20.6

Exercises

Even without writing a client (which is a following exercise), you can test the
server using ncat :

$ ncat <host> <port-number> <<< "cmd"

The “<<<” syntax (which is specific to bash and zsh) means take
standard input from the following command-line argument.
For <host>, you could use localhost (or perhaps ip6-localhost).

Once you have a working server, check the following test cases:.
a while true; do ncat <host> <port> <<< 'false'; done

If we create lots of children, is the server reaping the zombies? (Check the
output from ps axl | grep "defunct".)

See sockets/is_echo_sv.c for an example of a SIGCHLD handler and
how to install it with sigaction().

b ncat <host> <port> <<< 'ls nonexistent-file'
Does the error message from ls appear for the client?

c ncat <host> <port> <<< 'sleep 1'
Does this cause accept() in the server to fail with an error? (Make sure you do
have error checking code for the accept() call.)

Linux/UNIX System Programming ©2026 M. Kerrisk Internet Domain Sockets: Address Conversion 20-44 §20.6

Exercises

d ncat <host> <port> <<< 'rubbish'
Does a suitable error message appear for the client?

e Does your server handle the possibility that fork() may fail, by sending a
suitable error message back to the client? Test this by running the server from
a shell with a reduced process limit that is (say) 100 greater than the number
of tasks currently being run by the user:

$ ulimit -u $(($(ps -L -u $USER | wc -l) + 100))
$./ex.is_shell_sv <port>

And then from another shell, attempt to start multiple (say, 100) concurrent
clients:

$ for p in $(seq 1 100) ; do
(ncat localhost <port> <<< "sleep 30" &); echo $p; sleep 0.05

done

On the client side, do you see error messages sent by the server?

Linux/UNIX System Programming ©2026 M. Kerrisk Internet Domain Sockets: Address Conversion 20-45 §20.6

Exercises

2 U U U Write a client for the preceding server:

is_shell_cl <server-host> <server-port> 'shell command'

The client connects to the shell server, sends it a single shell command, reads the
results sent back across the socket by the server, and displays the results on stdout.
[template: sockets/ex.is_shell_cl.c]

3 U U U Write a UDP client and server with the following command-line syntax:

id_sysquery_cl <server-host> <server-port> <query>
id_sysquery_sv <server-port>

The client sends a datagram to the server at the specified host and port. The
datagram contains the word given in query, which should be either of the
strings “uptime” or “version”. The client waits for the server to send a
datagram in response, and prints the contents of that datagram on standard
output.
The server binds its socket to the specified port and receives datagrams from
clients, and, depending on the content of the datagram, constructs a datagram
containing the contents of either /proc/uptime or /proc/version, which it
sends back to the client. If the client sends a datagram containing an
unexpected word, the server should send back a datagram containing a suitable
error message.

Linux/UNIX System Programming ©2026 M. Kerrisk Internet Domain Sockets: Address Conversion 20-46 §20.6

