
Linux Security and Isolation APIs Fundamentals

User Namespaces and
Capabilities

Michael Kerrisk, man7.org © 2026

mtk@man7.org

January 2026

Outline Rev: # d49d0b54be95

13 User Namespaces and Capabilities 13-1
13.1 User namespaces and capabilities 13-3
13.2 User namespaces and capabilities: example 13-8
13.3 Exercises 13-21
13.4 What does it mean to be superuser in a namespace? 13-24

Outline
13 User Namespaces and Capabilities 13-1
13.1 User namespaces and capabilities 13-3
13.2 User namespaces and capabilities: example 13-8
13.3 Exercises 13-21
13.4 What does it mean to be superuser in a namespace? 13-24

What are the rules that determine
the capabilities that a process

has in a given user namespace?

Security and Isolation APIs Fundamentals ©2026 M. Kerrisk User Namespaces and Capabilities 13-4 §13.1

User namespace hierarchies

User NSs exist in a hierarchy
Each user NS has a parent, going back to initial user NS

Parental relationship is established when user NS is created:
clone() : parent of new user NS is NS of caller of clone()
unshare() : parent of new user NS is caller’s previous NS

Parental relationship is significant because it plays a part in
determining capabilities a process has in user NS

Security and Isolation APIs Fundamentals ©2026 M. Kerrisk User Namespaces and Capabilities 13-5 §13.1

User namespaces and capabilities

Whether a process has an effective capability inside a
“target” user NS depends on several factors:

Whether the capability is present in process’s effective set
Which user NS the process is a member of
The process’s effective UID
The effective UID of process that created target user NS
The parental relationship between process’s user NS and
target user NS

See also namespaces/ns_capable.c
(A program that encapsulates the rules described next)

Security and Isolation APIs Fundamentals ©2026 M. Kerrisk User Namespaces and Capabilities 13-6 §13.1

Capability rules for user namespaces

1 A process has a capability in a user NS if:
it is a member of the user NS, and
capability is present in its effective set
Note: this rule doesn’t grant that capability in parent NS

2 A process that has a capability in a user NS has the
capability in all descendant user NSs as well

I.e., members of user NS are not isolated from effects of
privileged process in parent/ancestor user NS

3 A process in a parent user NS that has same eUID as
eUID of creator of child user NS has all capabilities in
that child NS

At creation time, kernel records eUID of creator as
“owner” of user NS
By virtue of previous rule, process also has capabilities in all
descendant user NSs

Security and Isolation APIs Fundamentals ©2026 M. Kerrisk User Namespaces and Capabilities 13-7 §13.1

Outline
13 User Namespaces and Capabilities 13-1
13.1 User namespaces and capabilities 13-3
13.2 User namespaces and capabilities: example 13-8
13.3 Exercises 13-21
13.4 What does it mean to be superuser in a namespace? 13-24

Demonstration of capability rules

Set up following scenario; then both userns_setns_test
processes will try to join Child namespace 1 using setns()

bash

unshare –Ur

bash

bash

userns_setns_test
(parent)

userns_setns_test
(child)

Parent namespace
(initial namespace)

Child namespace 1
Child namespace 2

fork() fork()

unshare(CLONE_NEWUSER)
execve() clone(CLONE_NEWUSER)

Security and Isolation APIs Fundamentals ©2026 M. Kerrisk User Namespaces and Capabilities 13-9 §13.2

namespaces/userns_setns_test.c

./userns_setns_test /proc/PID/ns/user

Creates a child process in a new user NS
Parent and child then both call setns() to attempt to join
user NS identified by argument

setns() requires CAP_SYS_ADMIN capability in target NS

Security and Isolation APIs Fundamentals ©2026 M. Kerrisk User Namespaces and Capabilities 13-10 §13.2

namespaces/userns_setns_test.c

int main(int argc, char *argv[]) {
...
long fd = open(argv[1], O_RDONLY);

pid_t child_pid = clone(childFunc, stack + STACK_SIZE,
CLONE_NEWUSER | SIGCHLD, (void *) fd);

test_setns("parent: ", fd);
printf("\n");

waitpid(child_pid, NULL, 0);
exit(EXIT_SUCCESS);

}

Open /proc/PID/ns/user file specified on command line
Create child in new user NS

childFunc() receives file descriptor as argument
Try to join user NS referred to by fd (test_setns())
Wait for child to terminate

Security and Isolation APIs Fundamentals ©2026 M. Kerrisk User Namespaces and Capabilities 13-11 §13.2

namespaces/userns_setns_test.c

static int childFunc(void *arg) {
long fd = (long) arg;

usleep(100000);
test_setns("child: ", fd);
return 0;

}

Child sleeps briefly, to allow parent’s output to appear first
Child attempts to join user NS referred to by fd

Security and Isolation APIs Fundamentals ©2026 M. Kerrisk User Namespaces and Capabilities 13-12 §13.2

namespaces/userns_setns_test.c

static void display_symlink(char *pname, char *link) {
char target[PATH_MAX];
ssize_t s = readlink(link, target, PATH_MAX);
printf("%s%s ==> %.*s\n", pname, link, (int) s, target);

}

static void test_setns(char *pname, int fd) {
display_symlink(pname, "/proc/self/ns/user");
display_creds_and_caps(pname);
if (setns(fd, CLONE_NEWUSER) == -1) {

printf("%s setns() failed: %s\n", pname, strerror(errno));
} else {

printf("%s setns() succeeded\n", pname);
display_symlink(pname, "/proc/self/ns/user");
display_creds_and_caps(pname);

}
}

Display caller’s user NS symlink, credentials, and capabilities
Try to setns() into user NS referred to by fd
On success, again display user NS symlink, credentials, and
capabilities

Security and Isolation APIs Fundamentals ©2026 M. Kerrisk User Namespaces and Capabilities 13-13 §13.2

namespaces/userns_functions.c

1 static void display_creds_and_caps(char *msg) {
2 printf("%seUID = %ld; eGID = %ld; ", msg,
3 (long) geteuid(), (long) getegid());
4
5 cap_t caps = cap_get_proc();
6 char *s = cap_to_text(caps, NULL)
7 printf("capabilities: %s\n", s);
8
9 cap_free(caps);

10 cap_free(s);
11 }

Display caller’s credentials and capabilities
(Different source file)

Security and Isolation APIs Fundamentals ©2026 M. Kerrisk User Namespaces and Capabilities 13-14 §13.2

namespaces/userns_setns_test.c

In a terminal in initial user NS, we run the following commands:
$ id -u
1000
$ readlink /proc/$$/ns/user
user:[4026531837]
$ PS1='sh2# ' unshare -Ur bash
sh2# echo $$
30623
sh2# id -u
0
sh2# readlink /proc/$$/ns/user
user:[4026532638]

Show UID and user NS for initial shell
Start a new shell in a new user NS

Show PID of new shell
Show UID and user NS of new shell

Security and Isolation APIs Fundamentals ©2026 M. Kerrisk User Namespaces and Capabilities 13-15 §13.2

namespaces/userns_setns_test.c

$./userns_setns_test /proc/30623/ns/user
parent: readlink("/proc/self/ns/user") ==> user:[4026531837]
parent: eUID = 1000; eGID = 1000; capabilities: =
parent: setns() succeeded
parent: eUID = 0; eGID = 0; capabilities: =ep

child: readlink("/proc/self/ns/user") ==> user:[4026532639]
child: eUID = 65534; eGID = 65534; capabilities: =ep
child: setns() failed: Operation not permitted

In a second terminal window, we run our setns() test program:
Results of readlink() calls show:

Parent userns_setns_test process is in initial user NS
Child userns_setns_test is in another user NS

setns() in parent succeeded, and parent gained full
capabilities as it moved into the user NS
setns() in child fails; child has no capabilities in target NS

Security and Isolation APIs Fundamentals ©2026 M. Kerrisk User Namespaces and Capabilities 13-16 §13.2

namespaces/userns_setns_test.c

$./userns_setns_test /proc/30623/ns/user
parent: readlink("/proc/self/ns/user") ==>

user:[4026531837]
parent: setns() succeeded
parent: eUID = 0; eGID = 0; capabilities: =ep

child: readlink("/proc/self/ns/user") ==>
user:[4026532639]

child: setns() failed: Operation not permitted

setns() in child failed:
Rule 3: “processes in parent user NS that have same eUID
as creator of user NS have all capabilities in the NS”
Parent userns_setns_test process was in parent user NS
of target user NS and so had CAP_SYS_ADMIN
Child userns_setns_test process was in sibling user NS
and so had no capabilities in target user NS

Security and Isolation APIs Fundamentals ©2026 M. Kerrisk User Namespaces and Capabilities 13-17 §13.2

Quiz (who can signal a process in a child user NS?)

Process B
UID = 1001, caps: =

Process A
UID = 1000, caps: =

Process X
UID = 0, caps: =ep

Process C
UID = 5, caps: =ep

Process D
UID = 6, caps: =

Initial user NS

Child user NS
uid_map: 5 1000 10

creator UID = 1000 “Is user NS
parent of”

Child user NS was created by a process with UID 1000
That process (which presumably was not A) had capabilities that
allowed it to create a user NS with UID map with length > 1

Process X has all capabilities in initial user NS
Assume process A and process B have no capabilities in initial user NS
Assume C was first process in child NS and has all capabilities in NS
Process D has no capabilities

Security and Isolation APIs Fundamentals ©2026 M. Kerrisk User Namespaces and Capabilities 13-18 §13.2

Quiz (who can signal a process in a child user NS?)

Process B
UID = 1001, caps: =

Process A
UID = 1000, caps: =

Process X
UID = 0, caps: =ep

Process C
UID = 5, caps: =ep

Process D
UID = 6, caps: =

Initial user NS

Child user NS
uid_map: 5 1000 10

creator UID = 1000 “Is user NS
parent of”

Sending a signal requires UID match or CAP_KILL capability
To which of B, C, D can process A send a signal?
Can B send a signal to D? Can D send a signal to B?
Can process X send a signal to processes C and D?
Can process C send a signal to A? To B?
Can C send a signal to D?

Security and Isolation APIs Fundamentals ©2026 M. Kerrisk User Namespaces and Capabilities 13-19 §13.2

Quiz (who can signal a process in a child user NS?)

Process B
UID = 1001, caps: =

Process A
UID = 1000, caps: =

Process X
UID = 0, caps: =ep

Process C
UID = 5, caps: =ep

Process D
UID = 6, caps: =

Initial user NS

Child user NS
uid_map: 5 1000 10

creator UID = 1000 “Is user NS
parent of”

A can’t signal B, but can signal C (matching credentials) and D
(because A has capabilities in D’s NS)
B can signal D (matching credentials); likewise, D can signal B
X can signal C and D (because it has capabilities in parent user NS)
C can signal A (credential match), but not B
C can signal D, because it has capabilities in its NS

Security and Isolation APIs Fundamentals ©2026 M. Kerrisk User Namespaces and Capabilities 13-20 §13.2

Outline
13 User Namespaces and Capabilities 13-1
13.1 User namespaces and capabilities 13-3
13.2 User namespaces and capabilities: example 13-8
13.3 Exercises 13-21
13.4 What does it mean to be superuser in a namespace? 13-24

Exercises

1 Perform the following steps:
a [Ubuntu only] If you are using Ubuntu 24.04 or later, you may need to disable

an AppArmor setting that disables the creation of user namespaces by
unprivileged users. First, check whether the setting is already turned off (0),
using the following command:

$ sudo sysctl kernel.apparmor_restrict_unprivileged_userns

If the setting is not off (0), you can turn it off using the following command:

$ sudo sysctl -w kernel.apparmor_restrict_unprivileged_userns=0

b As an unprivileged user, start two sleep processes, one as the unprivileged user
and the other as UID 0:

$ id -u
1000
$ sleep 1000 &
$ sudo sleep 2000

c As superuser, in another terminal window use unshare to create a user
namespace with root mappings and run a shell in that namespace:

$ SUDO_PS1="ns2# " sudo unshare -U -r bash --norc

Security and Isolation APIs Fundamentals ©2026 M. Kerrisk User Namespaces and Capabilities 13-22 §13.3

Exercises

(Root mappings == process’s UID and GID in parent NS map to 0 in
child NS)
Setting the SUDO_PS1 environment variable causes sudo(8) to set the PS1
environment variable for the command that it executes. (PS1 defines the
prompt displayed by the shell.) The bash --norc option prevents the
execution of shell start-up scripts that might change PS1.

d Verify that the shell has a full set of capabilities and a UID map “0 0 1” (i.e.,
UID 0 in the parent namespace maps to UID 0 in the child user namespace):

ns2# grep -E 'Cap(Prm|Eff)' /proc/$$/status # Or: getpcaps $$
ns2# cat /proc/$$/uid_map

e From this shell, try to kill each of the sleep processes started above:

ns2# ps -o 'pid uid cmd' -C sleep # Discover 'sleep' PIDs
...
ns2# kill -9 <PID-1>
ns2# kill -9 <PID-2>

Which of the kill commands succeeds? Why?

Security and Isolation APIs Fundamentals ©2026 M. Kerrisk User Namespaces and Capabilities 13-23 §13.3

Outline
13 User Namespaces and Capabilities 13-1
13.1 User namespaces and capabilities 13-3
13.2 User namespaces and capabilities: example 13-8
13.3 Exercises 13-21
13.4 What does it mean to be superuser in a namespace? 13-24

User namespaces and capabilities

Kernel grants initial process in new user NS a full set of
capabilities
But, those capabilities are available only for operations on
objects governed by the new user NS

Security and Isolation APIs Fundamentals ©2026 M. Kerrisk User Namespaces and Capabilities 13-25 §13.4

User namespaces and capabilities

Kernel associates each non-user NS instance with a
specific user NS instance

Each non-user NS is “owned” by a user NS
When creating a new non-user NS, user NS of the creating
process becomes the owner of the new NS

Suppose a process operates on global resources governed by
a (non-user) NS:

Privilege checks are done according to process’s capabilities
in user NS that owns the NS

⇒ User NSs can deliver full capabilities inside a user NS
without allowing capabilities in outer user NS(s)

(Barring kernel bugs)

Security and Isolation APIs Fundamentals ©2026 M. Kerrisk User Namespaces and Capabilities 13-26 §13.4

User namespaces and capabilities–an example

Initial user namespace

creator eUID: 0

Initial network

namespace

Child user namespace

creator eUID: 1000

is ow
ned byis

ch
ild

 o
f

Initial UTS

namespace

is owned by

Second UTS

namespace

is owned by

Process X

eUID inside NS: 0

eUID in outer NS: 1000

capabilities: =ep

ismember of
is

member o
f

is member of

Example scenario; X was created with: unshare -Ur -u <prog>
X is in a new user NS, created with root mappings
X is in a new UTS NS, which is owned by new user NS
X is in initial instance of all other NS types (e.g., network NS)

Security and Isolation APIs Fundamentals ©2026 M. Kerrisk User Namespaces and Capabilities 13-27 §13.4

User namespaces and capabilities–an example

Initial user namespace

creator eUID: 0

Initial network

namespace

Child user namespace

creator eUID: 1000

is ow
ned byis

ch
ild

 o
f

Initial UTS

namespace

is owned by

Second UTS

namespace

is owned by

Process X

eUID inside NS: 0

eUID in outer NS: 1000

capabilities: =ep

ismember of
is

member o
f

is member of

Suppose X tries to change host name (CAP_SYS_ADMIN)
E.g., hostname bienne

X is in second UTS NS
Privileges checked according to X’s capabilities in user NS that owns
that UTS NS ⇒ succeeds (X has capabilities in user NS)

Security and Isolation APIs Fundamentals ©2026 M. Kerrisk User Namespaces and Capabilities 13-28 §13.4

User namespaces and capabilities–an example

Initial user namespace

creator eUID: 0

Initial network

namespace

Child user namespace

creator eUID: 1000

is ow
ned byis

ch
ild

 o
f

Initial UTS

namespace

is owned by

Second UTS

namespace

is owned by

Process X

eUID inside NS: 0

eUID in outer NS: 1000

capabilities: =ep

ismember of
is

member o
f

is member of

Suppose X tries to bring network device up/down (CAP_NET_ADMIN)
E.g., ip link set dev lo down

X is in initial network NS
Privileges checked according to X’s capabilities in user NS that owns
network NS ⇒ attempt fails (no capabilities in initial user NS)

Security and Isolation APIs Fundamentals ©2026 M. Kerrisk User Namespaces and Capabilities 13-29 §13.4

Containers and namespaces
Initial

user NS

Initial
UTS NS

Child
user NS

Initial
PID NS

Initial
mnt NS

Initial
NW NS

UTS NS
(hostname)

PID NS mnt NS
(mnt list)

NW NS
(NW infra.)

init process
(PID 1)

caps: =ep
Container

is child of
(a user NS)

is owned by

(a user NS)

is member of
(a NS)

Not all
NSs are
shown

“Superuser” process in a container has root power over resources
governed by non-user NSs owned by container’s user NS
And does not have privilege in outside user NS

(E.g., can’t change mounts seen by processes outside container)

Security and Isolation APIs Fundamentals ©2026 M. Kerrisk User Namespaces and Capabilities 13-30 §13.4

Demo: effect of capabilities in a user NS

Create a shell in new user and UTS NSs:
$ unshare -Ur -u bash
getpcaps $$
929: =ep # Shell has all capabilities in its user NS

Since this shell has all capabilities in user NS that owns its
UTS NS, we can change hostname:
hostname
bienne
hostname langwied
hostname
langwied

But, this shell is in a network NS owned by initial user NS,
and so can’t turn a NW device down:
ip link set dev lo down
RTNETLINK answers: Operation not permitted

Security and Isolation APIs Fundamentals ©2026 M. Kerrisk User Namespaces and Capabilities 13-31 §13.4

What about resources not governed by namespaces?

Some privileged operations relate to resources/features not
(yet) governed by any namespace

E.g., load kernel modules, raise process nice values
Having all capabilities in a (noninitial) user NS doesn’t grant
power to perform operations on features not currently
governed by any NS

E.g., load/unload kernel modules, raise process nice values
IOW: to perform these operations, process must have the
relevant capability in the initial user NS

Security and Isolation APIs Fundamentals ©2026 M. Kerrisk User Namespaces and Capabilities 13-32 §13.4

