Building and Using Shared Libraries on Linux

Symbol Interposition and Library

Load Order

Michael Kerrisk, man7.org © 2026

mtk@man7.org

January 2026

Outline

7 Symbol Interposition and Library Load Order
7.1 Symbol resolution and symbol interposition
7.2 Symbol resolution and library load order
7.3 Link-map lists (namespaces)

7.4 The global look-up scope

7.5 LD _DEBUG: tracing the dynamic linker

7.6 Exercises

7-1

7-9
7-15
7-17
7-19
7-25

Outline

7 Symbol Interposition and Library Load Order
7.1 Symbol resolution and symbol interposition

r-1

Run-time symbol resolution

@ Suppose main program and shared library both define a

function xyz(), and another function inside library calls xyz()

prog

libfoo.so

xyz(){

printf("main-xyz\n");

}

main() {
func(); — |
}

xyz(){
printf("foo-xyz\n");

func() {
} xyz();

@ To which symbol does reference to xyz() resolve?

@ The results may be a little surprising:

cd shlibs/sym res demo

€ H L H B

main-xyz

cc -g —-¢ —-fPIC -Wall foo.c
cc —-g -shared -o libfoo.so foo.o
cc —-g -o prog prog.c libfoo.so

LD_LIBRARY_PATH=. ./prog

e Definition in main program overrides version in library!

Shared Libraries on Linux

©2026 M. Kerrisk Symbol Interposition and Library Load Order

7-4 §7.1

Symbol interposition

@ When a symbol definition inside an object is overridden by an
outside definition, we say symbol has been interposed

e Interposition can occur for both functions and variables

@ Behavior shown on slide 7-4 has a good historical reason...

@ Shared libraries are designed to mirror traditional static
library semantics:
e Definition of global symbol in main program overrides version
in library
e Global symbol appears in multiple libraries?

e = reference is resolved to first definition when scanning
libraries in left-to-right order as specified in static link
command line

@ Interposition behavior made transition from static to shared
libraries easier

Shared Libraries on Linux ©2026 M. Kerrisk Symbol Interposition and Library Load Order 7-5 §7.1

Interposition vs libraries as self-contained subsystems

@ Symbol interposition semantics conflict with model of
shared library as a self-contained subsystem

e Shared library can't guarantee that reference to its own
global symbols will bind to those symbols at run time

e Properties of shared library may change when it is
aggregated into larger system

@ Can sometimes be desirable to force symbol references within
a shared library to resolve to library’s own symbols

e l.e., prevent interposition by outside symbol definition

org

Shared Libraries on Linux ©2026 M. Kerrisk Symbol Interposition and Library Load Order 7-6 §7.1

Forcing global symbol references to resolve inside library

@ —Bsymbolic linker option causes references to global symbols
within shared library to resolve to library's own symbols

$ cd shlibs/sym res demo

$ cc -g -c -fPIC -Wall foo.c

$ cc -g -shared -Wl,-Bsymbolic -o libfoo.so foo.o
$ cc -g -o prog prog.c libfoo.so

$ LD_LIBRARY_PATH=. ./prog

foo-xyz

e Adds ELF DF_SYMBOLIC flag in .dynamic section of object

e To see if object was built with this option, use either of:

objdump -p libfoo.so | grep SYMBOLIC
readelf -d libfoo.so | grep SYMBOLIC

@ DF SYMBOLIC flag in a library affects only the library itself
(not dependencies of the library)

@ More extensive example: shlibs/demo Bsymbolic

.org

Shared Libraries on Linux ©2026 M. Kerrisk Symbol Interposition and Library Load Order 7-7 §7.1

Forcing global symbol references to resolve inside library

@ Problem: —Bsymbolic affects all symbols in shared library ©
e And there are other problems...

@ Preferable to control “local reference binds to local
definition” behavior on a per-symbol basis

o Other techniques (described later) allow this ©

.org

Shared Libraries on Linux ©2026 M. Kerrisk Symbol Interposition and Library Load Order 7-8 §7.1

Outline

7 Symbol Interposition and Library Load Order 7-1

7.2 Symbol resolution and library load order 7-9

Symbol resolution and library load order

........ main...........
/ I \
libx1.so libyl.so libz1l.so
| | abcO{...} | call abcQ
I I |
libx2.s0 liby2.so libz2.s0
abcO{...} xyzO{...} |
xyz(){...} 1libz3.so0
xyz(O{...}

@ main has three dynamic dependencies

e Order of the dependencies was determined by order in link
command line

cc main.o libxl.so libyl.so libzl.so -o main

.org

Shared Libraries on Linux ©2026 M. Kerrisk Symbol Interposition and Library Load Order 7-10 §7.2

Symbol resolution and library load order

........ main...........
/ I \
libx1l.so libyl.so libzl.so
I | abc(O){...} | call abcQ)
I I |
libx2.so0 liby2.so 1libz2.so0
abcO{...} xyz(){...} |
xyz(O){...} 1libz3.so
xyzO{...}

@ Some of the libraries in turn have dependencies

@ Note: main has no direct dependencies other than
libx1.so, 1libyl.so, and 1ibzl.so

o Likewise, 1ibz1.so has no direct dependency on 1ibz3.so

.org

Shared Libraries on Linux ©2026 M. Kerrisk Symbol Interposition and Library Load Order 7-11 §7.2

Symbol resolution and library load order

........ main...........
/ I \
libx1.so libyl.so libz1l.so
| | abcO{...} | call abcQ
I I |
libx2.s0 liby2.so libz2.s0
abcO{...} xyzO{...} |
xyz(){...} 1libz3.so0
xyz(O{...}

@ libx2.so0 and libyl.so both define public function abc()

@ When abc() is called from inside 1ibz1.so, which instance
of abc() is invoked?

o Call to abc() resolves to definition in 1ibyl.so

.org

Shared Libraries on Linux ©2026 M. Kerrisk Symbol Interposition and Library Load Order 7-12 §7.2

Symbol resolution and library load order

........ main...........
/ I \
libx1l.so libyl.so libzl.so
I | abcO{...} | call abcQ)
I I |
libx2.so0 liby2.so 1libz2.so0
abc(){...} xyzO{...} |
xyz(O){...} 1libz3.so
xyzO{...}

@ Dependent libraries are added in breadth-first order
e Immediate dependencies of main are loaded first
e (In order given in link command line)

e Then dependencies of those dependencies, and so on

e Libraries that are already loaded are skipped (but are reference
counted)

@ Symbols are resolved by searching libraries in load order

.org

Shared Libraries on Linux ©2026 M. Kerrisk Symbol Interposition and Library Load Order 7-13 §7.2

Symbol resolution and library load order

........ main...........
/ | \
libx1.so libyl.so libz1l.so
| | abcO{...} | call abc()
| | | call xyzQ
libx2.s0 liby2.so libz2.s0
abcO{...} xyzO{...} |
xyz(){...} 1libz3.so0
xyz(O{...}

e A quiz...

@ 1libx2.so0, 1iby2.s0, and 1ibz3.so all define public
function xyz()

@ When xyz() is called from inside 1ibz1.so, which instance
of xyz() is invoked?
o Call to xyz() resolves to definition in 1ibx2.so

.org

Shared Libraries on Linux ©2026 M. Kerrisk Symbol Interposition and Library Load Order 7-14 §7.2

Outline

7 Symbol Interposition and Library Load Order 7-1

7.3 Link-map lists (namespaces) 7-15

Link-map lists (“namespaces”)

@ The set of all objects that have been loaded by application is
recorded in a link-map list (AKA “namespace”)
e Doubly linked list that is arranged in library load order
@ Main program is at front of link-map list

e See definition of struct link_map in <link.h>

o dl_iterate_phdr(3) can be used to iterate through list
e Example program: shlibs/dl_iterate_phdr

(See also dlinfo(3), which obtains info about a dynamically loaded object)

.org

Shared Libraries on Linux ©2026 M. Kerrisk Symbol Interposition and Library Load Order 7-16 §7.3

Outline

7 Symbol Interposition and Library Load Order 7-1

7.4 The global look-up scope 7-17

The global look-up scope

@ In most cases, symbol resolution is performed via an ordered
search of objects listed in the global look-up scope (GLS)

@ GLS is a list of following objects (in this order)
e The main program

e All dependencies of main, loaded in breadth-first order
o Libraries opened with dlopen(RTLD_GLOBAL)

@ Order of objects in GLS is similar to link-map list order
o (There can be some differences when dlopen() is used)

@ In some cases, symbol look-ups may search additional scopes
e E.g., “local” scope and “self” scope

o See discussion of Look-up scopes (later)

Shared Libraries on Linux ©2026 M. Kerrisk Symbol Interposition and Library Load Order 7-18 §7.4

Outline

7 Symbol Interposition and Library Load Order 7-1

7.5 LD _DEBUG: tracing the dynamic linker 7-19

The LD_DEBUG environment variable

@ LD DEBUG can be used to trace operation of dynamic linker
e LD_DEBUG="walue" prog

@ value is one or more words separate by space/comma/colon
o Ignored (for security reasons) in privileged programs

e To send trace output to file (instead of stderr), use
LD_DEBUG_OUTPUT=path

e To list LD_DEBUG options, without executing program:

$ LD_DEBUG=help ./prog
Valid options for the LD_DEBUG environment variable are:
libs display library search paths
reloc display relocation processing
files display progress for input file
symbols display symbol table processing
bindings display information about symbol binding
versions display version dependencies
scopes display scope information
all all previous options combined
statistics display relocation statistics
unused determined unused DSOs
help display this help message and exit

.org

Shared Libraries on Linux ©2026 M. Kerrisk Symbol Interposition and Library Load Order 7-20 §7.5

The LD_DEBUG environment variable

@ libs: show locations where each library is searched for
@ files: emit message as each library is opened

@ reloc: emit message at start of relocation processing for
each object

@ symbols: for each symbol relocation, show which library
symbol tables are searched
@ bindings: for each symbol relocation, show object
containing definition to which symbol binds
o Corresponds to final entry shown by symbols (unless symbol
is undefined)
@ versions: display version dependency checks that are
performed for each object
e Relates to symbol-versioned libraries

Shared Libraries on Linux ©2026 M. Kerrisk Symbol Interposition and Library Load Order 7-21 §7.5

The LD_DEBUG environment variable

@ All of the preceding LD _DEBUG values also cause DL to
display messages when:

e Each object’s constructors and destructors are executed
e On transfer of control to main()

@ In addition, there are the following LD DEBUG values:

e scopes: display search scopes for symbol relocation (objects
that will be searched during relocation for this object)

@ See the discussion of Look-up scopes (later)

e unused: used to implement “1dd -u" (in conjunction with
setting LD_TRACE_LOADED_OBJECTS=1)

.org

Shared Libraries on Linux ©2026 M. Kerrisk Symbol Interposition and Library Load Order 7-22 §7.5

LD DEBUG example

(Abridged) example of output from LD_DEBUG:

$ LD_DEBUG="reloc symbols bindings" ./prog

32150: relocation processing: ./prog

32150: symbol=x; lookup in file=./prog [0]
32150: symbol=x; lookup in file=./libdemo.so.1 [O0]
32150: binding file ./prog [0] to ./libdemo.so.l [0]: normal symbol “x'

@ “relocation processing’ message from reloc
e One message per library
@ “symbol...lookup in file" messages from symbols
e One group of messages for each symbol relocation
@ “binding file...symbol"” message from bindings
e One message for each relocated symbol, showing origin of

reference, object containing defn, and symbol name

@ Number at start of each line is PID of process

.org

Shared Libraries on Linux ©2026 M. Kerrisk Symbol Interposition and Library Load Order 7-23 §7.5

LD DEBUG example

Another LD DEBUG example:

$ LD DEBUG=scopes date

21945:

21945: 1Initial object scopes

21945: object=date [0]

21945: scope 0: date /1ib64/libc.so.6 /1ib64/1d-1linux-x86-64.s0.2

@ LD DEBUG=scopes shows look-up scopes of each loaded
object

@ Here, we see the global look-up scope that is visible to the
executable object, "date"

.org

Shared Libraries on Linux ©2026 M. Kerrisk Symbol Interposition and Library Load Order 7-24 §7.5

Outline

7 Symbol Interposition and Library Load Order 7-1
7.6 Exercises 7-25
Exercises

The files in the directory shlibs/sym_res_load_order set up the scenario
shown earlier under the heading Symbol resolution and library load order
(slide 7-14). (You can inspect the source code used to build the various
shared libraries to verify this.) The main program uses d/_iterate_phdr() to
display the link-map order of the loaded shared objects.

@ Use make(1) to build the shared libraries and the main program, and
use the following command to run the program in order to verify the
link-map order and also to see which versions of abc() and xyz() are
called from inside 1ibz1.so:

LD_LIBRARY_PATH=. ./main

© Run the program using LD_DEBUG=1ibs and use the dynamic linker’s
debug output to verify the order in which the shared libraries are loaded,
and which locations are searched for each library.

$ LD_DEBUG=libs LD_LIBRARY_PATH=. ./main 2>&1 | less

.org

Shared Libraries on Linux ©2026 M. Kerrisk Symbol Interposition and Library Load Order 7-26 §7.6

Exercises

© Run the program and use the dynamic linker's debug output to show
which libraries are searched and what definitions are finally bound for
the calls to abc() and xyz().

$ LD_DEBUG="symbols bindings" LD_LIBRARY_PATH=. ./main 2>&1 | less

© The order in which the dependencies of main appear in the global
look-up scope is determined by the order that the libraries are specified
in the link command used to build main. Verify this as follows:

e Moaodify the last target in the Makefile to rearrange the order in
which the libraries are specified in the command that builds main
to be: 1ibzl.so libyl.so libxl.so

@ Remove the executable using make clean.
@ Rebuild the executable using make.

@ Run the executable again, and note the difference in symbol
binding for the call to xyz() and the differences in the link-map
order that is displayed by dI_iterate_phdr().

Shared Libraries on Linux ©2026 M. Kerrisk Symbol Interposition and Library Load Order 7-27 §7.6

