Building and Using Shared Libraries on Linux

The Dynamic Linker

Michael Kerrisk, man7.org © 2026

mtk@man7.org

January 2026

Outline
6 The Dynamic Linker 6-1
6.1 The dynamic linker 6-3
6.2 Rpath: specifying library search paths in an object 6-5
6.3 Dynamic string tokens 6-12
6.4 Finding shared libraries at run time 6-17
6.5 How programs get run 6-19

6.6 Exercises 0-23

Outline

6 The Dynamic Linker 6-1
6.1 The dynamic linker 6-3

The dynamic linker

e Dynamic linker (DL) == run-time linker == loader

@ Loads shared libraries needed by program

@ Performs symbol relocations

e By examining dynamic symbol tables (.dynsym) of all objects

@ Is itself a shared library, but special:

.org

o Loaded (by kernel) early in execution of a program

o Is statically linked (thus, it has no dependencies itself)

Shared Libraries on Linux ©2026 M. Kerrisk The Dynamic Linker 6-4 §6.1

Outline

6 The Dynamic Linker 6-1

6.2 Rpath: specifying library search paths in an object 6-5

Specifying library search paths in an object

@ So far, we have two methods of informing the dynamic linker
(DL) of location of a shared library:

o LD LIBRARY PATH

e Installing library in one of the standard directories

@ Third method: during static linking, we can insert a list of
directories into the executable

e A “run-time library path (rpath) list”

e At run time, DL will search listed directories to resolve
dynamic dependencies

e Useful if libraries will reside in locations that are fixed, but
not in standard list

[TLPI §41.10]

Shared Libraries on Linux ©2026 M. Kerrisk The Dynamic Linker 6-6 §6.2

Defining an rpath list when linking

@ To embed an rpath list in an executable, use the —rpath
linker option
e Multiple —rpath options can be specified = ordered list

e Alternatively, multiple directories can be specified as a
colon-separated list in a single —rpath option

@ Example:

$ cc -g -Wall -Wl,-rpath,$PWD -o prog prog.c libdemo.so
$ objdump -p prog | grep 'R[UN]*PATH'
RUNPATH /home/mtk/1sp/shlibs/demo
$./prog
Called modl-x1
Called mod2-x2

e Embeds current working directory in rpath list
e objdump command allows us to inspect rpath list

e Executable now “tells” DL where to find shared library

Shared Libraries on Linux ©2026 M. Kerrisk The Dynamic Linker 6-7 §6.2

An rpath improvement: DT _RUNPATH

There are two types of rpath list:
e Differ in precedence relative to LD_LIBRARY_PATH
@ Original type of rpath list has higher precedence
o DT_RPATH entry in .dynamic ELF section

e This was a design error
@ User should have full control when using LD_LIBRARY_PATH

.org

Shared Libraries on Linux ©2026 M. Kerrisk The Dynamic Linker 6-8 §6.2

An rpath improvement: DT _RUNPATH

@ Newer rpath type has lower precedence

e Gives user possibility to override rpath at runtime using
LD_LIBRARY_PATH (usually what we want)

e DT_RUNPATH entry in .dynamic ELF section
@ Supported in DL since 1999

o Use: cc —WI -rpath,some-dir-path —WI,--enable-new-dtags
e Since binutils 2.24 (2013): inserts only DT_RUNPATH entry

e Before binutils 2.24, inserted DT_RUNPATH and DT_RPATH (to
allow for old DLs that didn't understand DT_RUNPATH)

e Some distros (e.g., Ubuntu, Fedora) default to
—WI,--enable-new-dtags

@ If both types of rpath list are embedded in an object,
DT_RUNPATH has precedence (i.e., DT_RPATH is ignored)

.org

Shared Libraries on Linux ©2026 M. Kerrisk The Dynamic Linker 6-9 §6.2

Shared libraries can have rpath lists

@ Shared libraries can themselves have dependencies

@ = can use —rpath linker option to embed rpath lists when
building shared libraries

.org

Shared Libraries on Linux ©2026 M. Kerrisk The Dynamic Linker 6-10 §6.2

An object’s rpath list is private to the object

@ Each object (main or a shared library) can have an rpath...

@ An object’s (DT_RUNPATH) rpath is used for resolving only its
own immediate dependencies
e E.g., suppose that:

e main depends on 1ibX.so and has rpath that specifies where
to find 1ibX.so

@ 1ibX.so depends on 1ibY.so, but has no rpath
@ Rpath of main isn't used to help find dependency of 1ibX.so
@ See example in shlibs/rpath_independent

o Old style rpath (DT_RPATH) behaves differently!

@ The DT_RPATH of object A can be used to find objects needed
by libraries in dependency tree of A

@ See example in shlibs/rpath_dt_rpath

.org

Shared Libraries on Linux ©2026 M. Kerrisk The Dynamic Linker 6-11 §6.2
Outline
6 The Dynamic Linker 6-1

6.3 Dynamic string tokens 6-12

Dynamic string tokens

@ DL understands certain special strings in rpath list
e Dynamic string tokens

o Written as $NAME or ${NAME}
@ DL also understands these names in some other contexts
LD _LIBRARY PATH, LD PRELOAD, LD _AUDIT

o DT_NEEDED (i.e., in dependency lists)
@ See example in shlibs/dt_needed_dst

dlopen()
See Id.so(8)

.org

Shared Libraries on Linux ©2026 M. Kerrisk The Dynamic Linker 6-13 §6.3

Dynamic string tokens

@ $ORIGIN: expands to directory containing program or library
e Allow us to write “turn-key" applications:

@ Installer unpacks tarball containing application with library in
(say) a subdirectory

@ Application can be executed without installing library in
“standard” location

e Application can be linked with:

cc -Wl,-rpath, '$0RIGIN/1ib"

e /\ /\ Use quotes to prevent interpretation of $ by shelll
e Example: shlibs/shlib_origin_dst

.org

Shared Libraries on Linux ©2026 M. Kerrisk The Dynamic Linker 6-14 §6.3

Dynamic string tokens

@ $ORIGIN is generally ignored in privileged programs

o Privileged = set-UID / set-GID / file capabilities

e Prevents security vulnerabilities based on creation of hard
links to privileged programs

e Exception: $0RIGIN expansion that leads to path in trusted
directory (e.g., /1ib64) is permitted

e E.g., allows binary in /bin with rpath such as
$ORIGIN/../$LIB/sub

e See comments in glibc's elf/d1-1oad.c and
https://amir.rachum.com/shared-libraries/

Shared Libraries on Linux ©2026 M. Kerrisk The Dynamic Linker 6-15 §6.3

Dynamic string tokens

Other dynamic string tokens:
@ $LIB: expands to 1ib or 1ib64, depending on architecture
o E.g., useful on multi-arch platforms to build /supply 32-bit or
64-bit library, as appropriate
e On Debian/Ubuntu expands to (on x86 platforms): 1ib32 or
1ib/x86_64-1inux-gnu
@ $PLATFORM: expands to string corresponding to processor
type (e.g., x86_64, 1386, 1686, aarch64, aarch64 be)
e Rpath entry can include arch-specific directory component

e E.g., on IA-32, could provide different optimized library
implementations for 1386 vs 1686

.org

Shared Libraries on Linux ©2026 M. Kerrisk The Dynamic Linker 6-16 §6.3

https://amir.rachum.com/shared-libraries/

Outline

6 The Dynamic Linker 6-1

6.4 Finding shared libraries at run time 6-17

Finding shared libraries at run time

When resolving dependencies in an object's dynamic dependency
list, DL deals with each dependency string as follows:

@ If the string contains a slash = interpret dependency as a
relative or absolute pathname

@ Otherwise, search for shared library using these rules
© |If object has DT_RPATH list and does not have DT_RUNPATH
list, search directories in DT_RPATH list

Q@ If LD_LIBRARY_PATH defined, search directories it specifies

@ For security reasons, LD_LIBRARY_PATH is ignored in secure-execution
mode (set-UID and set-GID programs, programs with capabilities)

© If object has DT_RUNPATH list, search directories in that list

@ Check /etc/1d.so.cache for a corresponding entry

© Search /1ib and /usr/1lib (in that order)
@ Or /1ib64 and /usr/1ib64

[TLPI §41.11]

.org

Shared Libraries on Linux ©2026 M. Kerrisk The Dynamic Linker 6-18 §6.4

Outline

6 The Dynamic Linker 6-1

6.5 How programs get run 6-19

Steps in execution of a program

@ A process calls execve(), specifying ELF file to execute

@ Kernel's ELF program loader' reinitializes process image

based on contents of ELF file
e Builds segments of process based on program header table
(PHT) and ELF sections
e Kernel has only a rudimentary understanding of ELF format
(It knows “just enough”)

o Constructs auxiliary vector (AV) at top of process address
space
@ AV is a table of key-value pairs containing info that is useful
primarily for DL

@ AV sits just past end of environ (see proc/auxvec.c)

org

Shared Libraries on Linux ©2026 M. Kerrisk The Dynamic Linker 6-20 §6.5

Steps in execution of a program

© If PHT contains PT_INTERP entry, kernel loads interpreter
into process address space and passes control to it

e Loading of interpreter proceeds similarly to loading program
e PT_INTERP entry normally specifies the dynamic linker

© Dynamic linker:
e Examines DT_NEEDED entries in ELF image

e Loads specified shared libraries
@ lteratively, since libraries may in turn have DT_NEEDED entries

e Performs relocations
@ DL has much more detailed understanding of ELF format

e Passes control to program entry point
e Entry point is obtained from auxiliary vector (AT_ENTRY)

Shared Libraries on Linux ©2026 M. Kerrisk The Dynamic Linker 6-21 §6.5

Further information

@ How programs get run: ELF binaries, D. Drysdale, 2015,
http://lwn.net/Articles/631631/

@ A look at dynamic linking, D. Allen, 2024,
https://lwn.net/Articles/961117/

@ getauxval() and the auxiliary vector, M. Kerrisk, 2012,
http://lwn.net/Articles/519085/

.org

Shared Libraries on Linux ©2026 M. Kerrisk The Dynamic Linker 6-22 §6.5

http://lwn.net/Articles/631631/
https://lwn.net/Articles/961117/
http://lwn.net/Articles/519085/

Outline

6 The Dynamic Linker

6.6 Exercises

6-23

Exercises

@ The directory shlibs/mysleep contains two files:

@ mysleep.c: implements a function, mysleep(nsecs), which prints a message
and calls sleep() to sleep for nsecs seconds.

@ mysleep_main.c: takes one argument that is an integer string. The program
calls mysleep() with the numeric value specified in the command-line argument.

Using these files, perform the following steps to create a shared library and
executable in the same directory. (You may find it easiest the write a script to

perform the necessary commands to build the shared library and executable; you can
then modify that script in the next exercise.)

@ Build a shared library from mysleep.c. (You do not need to create the library

with a soname or to create the linker and soname symbolic links.)

@ Compile and link mysleep_main.c against the shared library to produce an
executable that embeds an rpath list with the run-time location of the shared

library, specified as an absolute path (e.g., use the value of $PWD).

@ Verify that you can successfully run the executable without the use of

LD_LIBRARY_PATH.

@ If you find that you can’t run the executable successfully, you may be
able to debug the problem by inspecting the rpath of the executable:

objdump -p mysleep_main | grep 'R[UN]*PATH'

.org

Shared Libraries on Linux ©2026 M. Kerrisk

The Dynamic Linker

6-24 §6.6

Exercises

@ Try moving (not copying!) the executable and shared library to a different
directory. What now happens when you try to run the executable? Why?
e Now employ an rpath list that uses the $0RIGIN string:

@ Modify the previous example so that you create an executable with an rpath
list containing the string $0RIGIN/sub.
/\ Remember to use single quotes around $0RIGIN!

@ Copy the executable to some directory, and copy the library to a subdirectory,
sub, under that directory. Verify that the program runs successfully.

@ If you move both the executable and the directory sub (which still contains the
shared library) to a different location, is it still possible to run the executable?

@ Suppose you make the executable set-UID-root as follows:

sudo chown root mysleep_main
sudo chmod u+s mysleep_main

Suppose you now try to run the executable. You should find that the library
fails to load because $0RIGIN is ignored in set-UID programs.

@ If you don’t encounter a failure, it may be because your filesystem is
mounted with the nosuid option. You can check this as follows:

findmnt -T <dir>.

org

Shared Libraries on Linux ©2026 M. Kerrisk The Dynamic Linker 6-25 §6.6

