
Building and Using Shared Libraries on Linux

The Dynamic Linker

Michael Kerrisk, man7.org © 2026

mtk@man7.org

January 2026

Outline Rev: # d49d0b54be95

6 The Dynamic Linker 6-1
6.1 The dynamic linker 6-3
6.2 Rpath: specifying library search paths in an object 6-5
6.3 Dynamic string tokens 6-12
6.4 Finding shared libraries at run time 6-17
6.5 How programs get run 6-19
6.6 Exercises 6-23

Outline
6 The Dynamic Linker 6-1
6.1 The dynamic linker 6-3
6.2 Rpath: specifying library search paths in an object 6-5
6.3 Dynamic string tokens 6-12
6.4 Finding shared libraries at run time 6-17
6.5 How programs get run 6-19
6.6 Exercises 6-23

The dynamic linker

Dynamic linker (DL) == run-time linker == loader
Loads shared libraries needed by program
Performs symbol relocations

By examining dynamic symbol tables (.dynsym) of all objects
Is itself a shared library, but special:

Loaded (by kernel) early in execution of a program
Is statically linked (thus, it has no dependencies itself)

Shared Libraries on Linux ©2026 M. Kerrisk The Dynamic Linker 6-4 §6.1

Outline
6 The Dynamic Linker 6-1
6.1 The dynamic linker 6-3
6.2 Rpath: specifying library search paths in an object 6-5
6.3 Dynamic string tokens 6-12
6.4 Finding shared libraries at run time 6-17
6.5 How programs get run 6-19
6.6 Exercises 6-23

Specifying library search paths in an object

So far, we have two methods of informing the dynamic linker
(DL) of location of a shared library:

LD_LIBRARY_PATH
Installing library in one of the standard directories

Third method: during static linking, we can insert a list of
directories into the executable

A “run-time library path (rpath) list”
At run time, DL will search listed directories to resolve
dynamic dependencies
Useful if libraries will reside in locations that are fixed, but
not in standard list

[TLPI §41.10]
Shared Libraries on Linux ©2026 M. Kerrisk The Dynamic Linker 6-6 §6.2

Defining an rpath list when linking

To embed an rpath list in an executable, use the –rpath
linker option

Multiple –rpath options can be specified ⇒ ordered list
Alternatively, multiple directories can be specified as a
colon-separated list in a single –rpath option

Example:
$ cc -g -Wall -Wl,-rpath,$PWD -o prog prog.c libdemo.so
$ objdump -p prog | grep 'R[UN]*PATH'

RUNPATH /home/mtk/lsp/shlibs/demo
$./prog
Called mod1-x1
Called mod2-x2

Embeds current working directory in rpath list
objdump command allows us to inspect rpath list
Executable now “tells” DL where to find shared library

Shared Libraries on Linux ©2026 M. Kerrisk The Dynamic Linker 6-7 §6.2

An rpath improvement: DT_RUNPATH

There are two types of rpath list:
Differ in precedence relative to LD_LIBRARY_PATH
Original type of rpath list has higher precedence

DT_RPATH entry in .dynamic ELF section
This was a design error

User should have full control when using LD_LIBRARY_PATH

Shared Libraries on Linux ©2026 M. Kerrisk The Dynamic Linker 6-8 §6.2

An rpath improvement: DT_RUNPATH

Newer rpath type has lower precedence
Gives user possibility to override rpath at runtime using
LD_LIBRARY_PATH (usually what we want)
DT_RUNPATH entry in .dynamic ELF section

Supported in DL since 1999
Use: cc –Wl,-rpath,some-dir-path –Wl,--enable-new-dtags

Since binutils 2.24 (2013): inserts only DT_RUNPATH entry
Before binutils 2.24, inserted DT_RUNPATH and DT_RPATH (to
allow for old DLs that didn’t understand DT_RUNPATH)
Some distros (e.g., Ubuntu, Fedora) default to
–Wl,--enable-new-dtags

If both types of rpath list are embedded in an object,
DT_RUNPATH has precedence (i.e., DT_RPATH is ignored)

Shared Libraries on Linux ©2026 M. Kerrisk The Dynamic Linker 6-9 §6.2

Shared libraries can have rpath lists

Shared libraries can themselves have dependencies
⇒ can use –rpath linker option to embed rpath lists when
building shared libraries

Shared Libraries on Linux ©2026 M. Kerrisk The Dynamic Linker 6-10 §6.2

An object’s rpath list is private to the object

Each object (main or a shared library) can have an rpath...
An object’s (DT_RUNPATH) rpath is used for resolving only its
own immediate dependencies

E.g., suppose that:
main depends on libX.so and has rpath that specifies where
to find libX.so
libX.so depends on libY.so, but has no rpath
Rpath of main isn’t used to help find dependency of libX.so
See example in shlibs/rpath_independent

Old style rpath (DT_RPATH) behaves differently!
The DT_RPATH of object A can be used to find objects needed
by libraries in dependency tree of A
See example in shlibs/rpath_dt_rpath

Shared Libraries on Linux ©2026 M. Kerrisk The Dynamic Linker 6-11 §6.2

Outline
6 The Dynamic Linker 6-1
6.1 The dynamic linker 6-3
6.2 Rpath: specifying library search paths in an object 6-5
6.3 Dynamic string tokens 6-12
6.4 Finding shared libraries at run time 6-17
6.5 How programs get run 6-19
6.6 Exercises 6-23

Dynamic string tokens

DL understands certain special strings in rpath list
Dynamic string tokens
Written as $NAME or ${NAME}

DL also understands these names in some other contexts
LD_LIBRARY_PATH, LD_PRELOAD, LD_AUDIT
DT_NEEDED (i.e., in dependency lists)

See example in shlibs/dt_needed_dst

dlopen()
See ld.so(8)

Shared Libraries on Linux ©2026 M. Kerrisk The Dynamic Linker 6-13 §6.3

Dynamic string tokens

$ORIGIN: expands to directory containing program or library
Allow us to write “turn-key” applications:

Installer unpacks tarball containing application with library in
(say) a subdirectory
Application can be executed without installing library in
“standard” location

Application can be linked with:
cc -Wl,-rpath,'$ORIGIN/lib'

" " Use quotes to prevent interpretation of $ by shell!

Example: shlibs/shlib_origin_dst

Shared Libraries on Linux ©2026 M. Kerrisk The Dynamic Linker 6-14 §6.3

Dynamic string tokens

$ORIGIN is generally ignored in privileged programs
Privileged = set-UID / set-GID / file capabilities
Prevents security vulnerabilities based on creation of hard
links to privileged programs
Exception: $ORIGIN expansion that leads to path in trusted
directory (e.g., /lib64) is permitted

E.g., allows binary in /bin with rpath such as
$ORIGIN/../$LIB/sub

See comments in glibc’s elf/dl-load.c and
https://amir.rachum.com/shared-libraries/

Shared Libraries on Linux ©2026 M. Kerrisk The Dynamic Linker 6-15 §6.3

Dynamic string tokens

Other dynamic string tokens:
$LIB: expands to lib or lib64, depending on architecture

E.g., useful on multi-arch platforms to build/supply 32-bit or
64-bit library, as appropriate
On Debian/Ubuntu expands to (on x86 platforms): lib32 or
lib/x86_64-linux-gnu

$PLATFORM: expands to string corresponding to processor
type (e.g., x86_64, i386, i686, aarch64, aarch64_be)

Rpath entry can include arch-specific directory component
E.g., on IA-32, could provide different optimized library
implementations for i386 vs i686

Shared Libraries on Linux ©2026 M. Kerrisk The Dynamic Linker 6-16 §6.3

https://amir.rachum.com/shared-libraries/

Outline
6 The Dynamic Linker 6-1
6.1 The dynamic linker 6-3
6.2 Rpath: specifying library search paths in an object 6-5
6.3 Dynamic string tokens 6-12
6.4 Finding shared libraries at run time 6-17
6.5 How programs get run 6-19
6.6 Exercises 6-23

Finding shared libraries at run time

When resolving dependencies in an object’s dynamic dependency
list, DL deals with each dependency string as follows:

If the string contains a slash ⇒ interpret dependency as a
relative or absolute pathname
Otherwise, search for shared library using these rules

1 If object has DT_RPATH list and does not have DT_RUNPATH
list, search directories in DT_RPATH list

2 If LD_LIBRARY_PATH defined, search directories it specifies
For security reasons, LD_LIBRARY_PATH is ignored in secure-execution
mode (set-UID and set-GID programs, programs with capabilities)

3 If object has DT_RUNPATH list, search directories in that list
4 Check /etc/ld.so.cache for a corresponding entry
5 Search /lib and /usr/lib (in that order)

Or /lib64 and /usr/lib64

[TLPI §41.11]
Shared Libraries on Linux ©2026 M. Kerrisk The Dynamic Linker 6-18 §6.4

Outline
6 The Dynamic Linker 6-1
6.1 The dynamic linker 6-3
6.2 Rpath: specifying library search paths in an object 6-5
6.3 Dynamic string tokens 6-12
6.4 Finding shared libraries at run time 6-17
6.5 How programs get run 6-19
6.6 Exercises 6-23

Steps in execution of a program

1 A process calls execve(), specifying ELF file to execute
2 Kernel’s ELF program loader† reinitializes process image

based on contents of ELF file
Builds segments of process based on program header table
(PHT) and ELF sections

Kernel has only a rudimentary understanding of ELF format
(It knows “just enough”)

Constructs auxiliary vector (AV) at top of process address
space

AV is a table of key-value pairs containing info that is useful
primarily for DL
AV sits just past end of environ (see proc/auxvec.c)

†ELF loader code is in kernel source file fs/binfmt_elf.cShared Libraries on Linux ©2026 M. Kerrisk The Dynamic Linker 6-20 §6.5

Steps in execution of a program

3 If PHT contains PT_INTERP entry, kernel loads interpreter
into process address space and passes control to it

Loading of interpreter proceeds similarly to loading program
PT_INTERP entry normally specifies the dynamic linker

4 Dynamic linker:
Examines DT_NEEDED entries in ELF image
Loads specified shared libraries

Iteratively, since libraries may in turn have DT_NEEDED entries
Performs relocations

DL has much more detailed understanding of ELF format
Passes control to program entry point

Entry point is obtained from auxiliary vector (AT_ENTRY)

Shared Libraries on Linux ©2026 M. Kerrisk The Dynamic Linker 6-21 §6.5

Further information

How programs get run: ELF binaries, D. Drysdale, 2015,
http://lwn.net/Articles/631631/

A look at dynamic linking, D. Allen, 2024,
https://lwn.net/Articles/961117/

getauxval() and the auxiliary vector, M. Kerrisk, 2012,
http://lwn.net/Articles/519085/

Shared Libraries on Linux ©2026 M. Kerrisk The Dynamic Linker 6-22 §6.5

http://lwn.net/Articles/631631/
https://lwn.net/Articles/961117/
http://lwn.net/Articles/519085/

Outline
6 The Dynamic Linker 6-1
6.1 The dynamic linker 6-3
6.2 Rpath: specifying library search paths in an object 6-5
6.3 Dynamic string tokens 6-12
6.4 Finding shared libraries at run time 6-17
6.5 How programs get run 6-19
6.6 Exercises 6-23

Exercises

1 The directory shlibs/mysleep contains two files:
mysleep.c: implements a function, mysleep(nsecs), which prints a message
and calls sleep() to sleep for nsecs seconds.
mysleep_main.c: takes one argument that is an integer string. The program
calls mysleep() with the numeric value specified in the command-line argument.

Using these files, perform the following steps to create a shared library and
executable in the same directory. (You may find it easiest the write a script to
perform the necessary commands to build the shared library and executable; you can
then modify that script in the next exercise.)

Build a shared library from mysleep.c. (You do not need to create the library
with a soname or to create the linker and soname symbolic links.)
Compile and link mysleep_main.c against the shared library to produce an
executable that embeds an rpath list with the run-time location of the shared
library, specified as an absolute path (e.g., use the value of $PWD).
Verify that you can successfully run the executable without the use of
LD_LIBRARY_PATH.

If you find that you can’t run the executable successfully, you may be
able to debug the problem by inspecting the rpath of the executable:

objdump -p mysleep_main | grep 'R[UN]*PATH'

Shared Libraries on Linux ©2026 M. Kerrisk The Dynamic Linker 6-24 §6.6

Exercises

Try moving (not copying!) the executable and shared library to a different
directory. What now happens when you try to run the executable? Why?

2 Now employ an rpath list that uses the $ORIGIN string:
Modify the previous example so that you create an executable with an rpath
list containing the string $ORIGIN/sub.
" Remember to use single quotes around $ORIGIN!
Copy the executable to some directory, and copy the library to a subdirectory,
sub, under that directory. Verify that the program runs successfully.
If you move both the executable and the directory sub (which still contains the
shared library) to a different location, is it still possible to run the executable?
Suppose you make the executable set-UID-root as follows:

sudo chown root mysleep_main
sudo chmod u+s mysleep_main

Suppose you now try to run the executable. You should find that the library
fails to load because $ORIGIN is ignored in set-UID programs.

If you don’t encounter a failure, it may be because your filesystem is
mounted with the nosuid option. You can check this as follows:

findmnt -T <dir>.

Shared Libraries on Linux ©2026 M. Kerrisk The Dynamic Linker 6-25 §6.6

This page intentionally blank

