
Linux Security and Isolation APIs

Control Groups (cgroups):
Introduction

Michael Kerrisk, man7.org © 2026

mtk@man7.org

January 2026

Outline Rev: # d49d0b54be95

20 Cgroups: Introduction 20-1
20.1 Preamble 20-3
20.2 What are control groups? 20-9
20.3 An example: the pids controller 20-16
20.4 Creating, destroying, and populating a cgroup 20-20
20.5 Exercises 20-28
20.6 Enabling and disabling controllers 20-34
20.7 Exercises 20-49
20.8 Appendix: Systemd and cgroups 20-53

Outline
20 Cgroups: Introduction 20-1
20.1 Preamble 20-3
20.2 What are control groups? 20-9
20.3 An example: the pids controller 20-16
20.4 Creating, destroying, and populating a cgroup 20-20
20.5 Exercises 20-28
20.6 Enabling and disabling controllers 20-34
20.7 Exercises 20-49
20.8 Appendix: Systemd and cgroups 20-53

Goals

We’ll focus on:
General principles of operation; goals of cgroups
The cgroup2 filesystem
Interacting with cgroup2 filesystem using shell commands

We’ll look briefly at some of the controllers
And maybe, origin of cgroups v2 (i.e., problems with cgroups
v1)

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-4 §20.1

Resources

Kernel documentation files
V2: Documentation/admin-guide/cgroup-v2.rst
V1: Documentation/admin-guide/cgroup-v1/*.rst

Before Linux 5.3: Documentation/cgroup-v1/*.txt
cgroups(7) manual page
Chris Down, 7 years of cgroup v2 (FOSDEM 2023),
https://www.youtube.com/watch?v=LX6fMlIYZcg
Neil Brown’s (2014) LWN.net series on cgroups:
https://lwn.net/Articles/604609/

Thought-provoking ideas on the meaning of grouping & hierarchy
https://lwn.net/Articles/484254/ – Tejun Heo’s initial thoughts
about redesigning cgroups (Feb 2012)

See also https://lwn.net/Articles/484251/, Fixing Control
Groups, Jon Corbet, Feb 2012

Other articles at https://lwn.net/Kernel/Index/#Control_groups

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-5 §20.1

Some history

2006/2007, “Process Containers” @ Google ⇒ Cgroups v1
Jan 2008: initial mainline kernel release (Linux 2.6.24)

Three resource controllers (all CPU-related) in initial release
Subsequently, other controllers are added

memory, devices, freezer, net_cls, blkio...
But a few years of uncoordinated design leads to a mess

Decentralized design fails us... again
2012: work has already begun on cgroups v2...

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-6 §20.1

https://www.youtube.com/watch?v=LX6fMlIYZcg
https://lwn.net/Articles/604609/
https://lwn.net/Articles/484254/
https://lwn.net/Articles/484251/
https://lwn.net/Kernel/Index/#Control_groups

Some history

Sep 2015: systemd adds cgroup v2 support
(Based on kernel 4.2)

Mar 2016: cgroups v2 officially released (Linux 4.5)
But, lacks feature parity with cgroups v1

Jan 2018: cpu and devices controllers are released for
cgroups v2

(Absence had been major roadblock to adoption of v2)
Oct 2019: Fedora 31 is first distro to move to v2-by-default
2020: Docker 20.10 gets cgroups v2 support
Later: other distros move to v2-by-default

2021: Debian 11.0; Ubuntu 21.10; Arch
openSUSE (2024?)

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-7 §20.1

We have passed the tipping point

We passed the v1-to-v2 tipping point a while aGO:
systemd, Docker and other tools fully support cgroups v2,
and the distros have migrated to v2
Cgroups v2 offers a number of advantages over v1

⇒ we’ll focus on cgroups v2, and (maybe) later look at how
v1 is different

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-8 §20.1

Outline
20 Cgroups: Introduction 20-1
20.1 Preamble 20-3
20.2 What are control groups? 20-9
20.3 An example: the pids controller 20-16
20.4 Creating, destroying, and populating a cgroup 20-20
20.5 Exercises 20-28
20.6 Enabling and disabling controllers 20-34
20.7 Exercises 20-49
20.8 Appendix: Systemd and cgroups 20-53

What are control groups?

Two principal components:
A mechanism for hierarchically grouping processes
A set of controllers (kernel components) that manage,
control, or monitor processes in cgroups

Interface is via a pseudo-filesystem
Cgroup manipulation takes form of filesystem operations,
which might be done:

Via shell commands
Programmatically
Via management daemon, e.g., systemd

(See appendix)
Via your container framework’s tools (e.g., LXC, Docker)

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-10 §20.2

What do cgroups allow us to do?

Limit resource usage of group
E.g., limit % of CPU available to group; limit amount of
memory that group can use

Resource accounting
Measure resources used by processes in group

Limit device access
Pin processes to CPU cores
Shape network traffic
Freeze a group

Freeze, restore, and checkpoint a group
And more...

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-11 §20.2

Terminology

Control group: a group of processes that are bound
together for purpose of resource management
(Resource) controller: kernel component that controls or
monitors processes in a cgroup

E.g., memory controller limits memory usage; cpu controller
limits CPU usage
Also known as subsystem

(But that term is rather ambiguous because so generic)
Cgroups are arranged in a hierarchy

Each cgroup can have zero or more child cgroups
Child cgroups inherit control settings from parent

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-12 §20.2

Filesystem interface

Cgroup filesystem directory structure defines cgroups +
cgroup hierarchy

I.e., use mkdir(2) / rmdir(2) (or equivalent shell commands)
to create cgroups

Each subdirectory contains automagically created files
Some files are used to manage the cgroup itself
Other files are controller-specific

Files in cgroup are used to:
Define/display membership of cgroup
Control behavior of processes in cgroup
Expose information about processes in cgroup (e.g.,
resource usage stats)

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-13 §20.2

The cgroup2 filesystem

On boot, systemd mounts v2 hierarchy at /sys/fs/cgroup
(or /sys/fs/cgroup/unified, if systemd is operating in
cgroups “hybrid” mode)

mount -t cgroup2 none /sys/fs/cgroup

The (pseudo)filesystem type is “cgroup2”
In cgroups v1, filesystem type is “cgroup”

The cgroups v2 mount is sometimes known as the “unified
hierarchy”

Because all controllers are associated with a single hierarchy
By contrast, in v1 there were multiple hierarchies

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-14 §20.2

Booting to cgroups v2

You may be on a distro that uses systemd’s “hybrid” mode
by default

Hybrid mode combines use of cgroups v1 and v2
Problem: can’t simultaneously use a controller in both v1
and v2
Simplest solution is usually to reboot, so that systemd
abandons its hybrid mode, and uses just v2

If this shows a value > 1, then you need to reboot:
$ grep -c cgroup /proc/mounts # Count cgroup mounts

Either: use kernel boot parameter, cgroup_no_v1:
cgroup_no_v1=all ⇒ disable all v1 controllers

Or: use systemd.unified_cgroup_hierarchy boot
parameter

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-15 §20.2

Outline
20 Cgroups: Introduction 20-1
20.1 Preamble 20-3
20.2 What are control groups? 20-9
20.3 An example: the pids controller 20-16
20.4 Creating, destroying, and populating a cgroup 20-20
20.5 Exercises 20-28
20.6 Enabling and disabling controllers 20-34
20.7 Exercises 20-49
20.8 Appendix: Systemd and cgroups 20-53

Example: the pids controller

pids (“process number”) controller allows us to limit
number of PIDs in cgroup (prevent fork() bombs!)
Create new cgroup, and place shell’s PID in that cgroup:
mkdir /sys/fs/cgroup/mygrp
echo $$
17273
echo $$ > /sys/fs/cgroup/mygrp/cgroup.procs

cgroup.procs defines/displays PIDs in cgroup
(Note ’#’ prompt ⇒ all commands done as superuser)

Moving a PID into a group automatically removes it from
group of which it was formerly a member

I.e., a process is always a member of exactly one group in the
hierarchy

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-17 §20.3

Example: the pids controller

Can read cgroup.procs to see PIDs in group:
cat /sys/fs/cgroup/mygrp/cgroup.procs
17273
20591

Where did PID 20591 come from?
PID 20591 is cat command, created as a child of shell

Child process inherits cgroup membership from parent

pids.current shows how many processes are in group:
cat /sys/fs/cgroup/mygrp/pids.current
2

Two processes: shell + cat

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-18 §20.3

Example: the pids controller

We can limit number of PIDs in group using pids.max file:
echo 5 > /sys/fs/cgroup/mygrp/pids.max
for a in $(seq 1 5); do sleep 60 & done
[1] 21283
[2] 21284
[3] 21285
[4] 21286
bash: fork: retry: Resource temporarily unavailable
bash: fork: retry: Resource temporarily unavailable
bash: fork: retry: Resource temporarily unavailable
bash: fork: Resource temporarily unavailable

(The shell retries a few times and then gives up)
pids.max defines/exposes limit on number of PIDs in cgroup

From a different shell, examine pids.current:
$ cat /sys/fs/cgroup/mygrp/pids.current
5

Not possible from first shell (can’t create more processes)

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-19 §20.3

Outline
20 Cgroups: Introduction 20-1
20.1 Preamble 20-3
20.2 What are control groups? 20-9
20.3 An example: the pids controller 20-16
20.4 Creating, destroying, and populating a cgroup 20-20
20.5 Exercises 20-28
20.6 Enabling and disabling controllers 20-34
20.7 Exercises 20-49
20.8 Appendix: Systemd and cgroups 20-53

Creating cgroups

Initially, all processes on system are members of root cgroup
New cgroups are created by creating subdirectories under
cgroup mount point:
mkdir /sys/fs/cgroup/mygrp

Relationships between cgroups are reflected by creating
nested (arbitrarily deep) subdirectory structure

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-21 §20.4

Destroying cgroups

An empty cgroup can be destroyed by removing directory
Empty == last process in cgroup terminates or migrates to
another cgroup and last child cgroup is removed

Presence of zombie process does not prevent removal of
cgroup directory

(Notionally, zombies are moved to root cgroup)

Not necessary (or possible) to delete attribute files inside
cgroup directory before deleting it

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-22 §20.4

Placing a process in a cgroup

To move a process to a cgroup, we write its PID to
cgroup.procs file in corresponding subdirectory
echo $$ > /sys/fs/cgroup/mygrp/cgroup.procs

In multithreaded process, moves all threads to cgroup
" Can write only one PID at a time

Otherwise, write() fails with EINVAL

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-23 §20.4

Viewing cgroup membership

To see PIDs in cgroup, read cgroup.procs file
PIDs are newline-separated
Zombie processes do not appear in list

" List is not guaranteed to be sorted or free of
duplicates

PID might be moved out and back into cgroup or recycled
while reading list

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-24 §20.4

Cgroup membership details

A process can be member of just one cgroup
That association defines attributes / parameters that apply
to the process

Adding a process to a different cgroup automatically removes
it from previous cgroup
On fork(), child inherits cgroup membership(s) of parent

Afterward, cgroup membership(s) of parent and child can be
independently changed
Since Linux 5.7 (2020), a child process can be created in a
specific v2 cgroup using clone3() CLONE_INTO_CGROUP

See procexec/t_CLONE_INTO_CGROUP.c

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-25 §20.4

/proc/PID/cgroup file

/proc/PID/cgroup shows cgroup memberships of PID
8:cpu,cpuacct:/cpugrp3
7:freezer:/
...
0::/grp1

1 Hierarchy ID (0 for v2 hierarchy)
Can be matched to hierarchy ID in another file,
/proc/cgroups (but that file is not so interesting)

2 Comma-separated list of controllers bound to the hierarchy
Field is empty for v2 hierarchy

3 Pathname of cgroup to which this process belongs
Pathname is relative to cgroup root directory

On a system booted in v2-only mode, there is just one line in
this file (0::...)

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-26 §20.4

Killing all processes in a cgroup

Writing “1” to cgroup.kill kills all processes in a cgroup
Action is recursive

I.e., processes in descendant cgroups are also killed
Processes are killed using SIGKILL
File is write-only, and available only in non-root cgroups :-)

Available since Linux 5.14 (2021)
Example use cases:

Service managers (e.g., systemd) can kill all processes in a
service
User-space “out-of-memory” (OOM) handlers can
quickly/easily kill an entire cgroup
Handle some kill-container use cases that can’t be handled
by killing container PID 1

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-27 §20.4

Outline
20 Cgroups: Introduction 20-1
20.1 Preamble 20-3
20.2 What are control groups? 20-9
20.3 An example: the pids controller 20-16
20.4 Creating, destroying, and populating a cgroup 20-20
20.5 Exercises 20-28
20.6 Enabling and disabling controllers 20-34
20.7 Exercises 20-49
20.8 Appendix: Systemd and cgroups 20-53

Notes for online practical sessions

Small groups in breakout rooms
Write a note into the Discord #general channelif you have a
preferred group

We will go faster, if groups collaborate on solving the
exercise(s)

You can share a screen in your room
I will circulate regularly between rooms to answer questions
Zoom has an “Ask for help” button...
Keep an eye on the Discord #general channel

Perhaps with further info about exercise;
Or a note that the exercise merges into a break

When your room has finished, write a message in the Discord
#general channel: “*** Room X has finished ***”

Then I have an idea of how many people have finished
Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-29 §20.5

Shared screen etiquette

It may help your colleagues if you use a larger than normal font!
In many environments (e.g., xterm, VS Code), we can adjust the
font size with Control+Shift+“+” and Control+“-”
Or (e.g., emacs) hold down Control key and use mouse wheel

Long shell prompts make reading your shell session difficult
Use PS1='$ ' or PS1='# '

Low contrast color themes are difficult to read; change this if you can
Turn on line numbering in your editor

In vim / neovim use: :set number
In emacs use: M-x display-line-numbers-mode <RETURN>

M-x means Left-Alt+x

For collaborative editing, relative line-numbering is evil....
In vim / neovim use: :set nornu
In emacs, the following should suffice:
M-: (display-line-numbers-mode) <RETURN>
M-: (setq display-line-numbers 'absolute) <RETURN>

M-: means Left-Alt+Shift+:

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-30 §20.5

Using tmate in in-person practical sessions

In order to share an X-term session with others, do the following:
Enter the command tmate in an X-term, and you’ll see the following:
$ tmate
...
Connecting to ssh.tmate.io...
Note: clear your terminal before sharing readonly access
web session read only: ...
ssh session read only: ssh S0mErAnD0m5Tr1Ng@lon1.tmate.io
web session: ...
ssh session: ssh S0mEoTheRrAnD0m5Tr1Ng@lon1.tmate.io

Share last “ssh” string with colleague(s) via a text channel
Or: "ssh session read only" string gives others read-only access

Your colleagues should paste that string into an X-term...

Now, you are sharing an X-term session in which anyone can type
Any "mate" can cut the connection to the session with the
3-character sequence <ENTER> ∼ .

To see above message again: tmate show-messages

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-31 §20.5

Booting to cgroups v2

In preparation for the following exercises, if necessary reboot your
system to use cgroups v2 only, as follows...
First, check whether your system is already booted to use cgroups v2
only:
$ grep cgroup2 /proc/mounts # Is there a v2 mount?
cgroup2 /sys/fs/cgroup cgroup2 ...
$ grep cgroup /proc/mounts | grep -v name= | grep -vc cgroup2
0 # 0 == no v1 controllers are mounted

If there is a v2 mount, and no v1 controllers are mounted, then you
do not need to do anything further; otherwise:

From the GRUB boot menu, you can boot to cgroups v2–only mode by
editing the boot command (select a GRUB menu entry and type “e”).
In the line that begins with “linux”, add the following parameter:
systemd.unified_cgroup_hierarchy

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-32 §20.5

Exercises

1 In this exercise, we create a cgroup, place a process in the cgroup, and
then migrate that process to a different cgroup.

Create two subdirectories, m1 and m2, in the cgroup root directory
(/sys/fs/cgroup).
Execute the following command, and note the PID assigned to the
resulting process:
sleep 300 &

Write the PID of the process created in the previous step into the
file m1/cgroup.procs, and verify by reading the file contents.
Now write the PID of the process into the file m2/cgroup.procs.
Is the PID still visible in the file m1/cgroup.procs? Explain.
Try removing cgroup m1 using the command rm -rf m1. Why
doesn’t this work?
If it is still running, kill the sleep process and then remove the
cgroups m1 and m2 using the rmdir command.

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-33 §20.5

Outline
20 Cgroups: Introduction 20-1
20.1 Preamble 20-3
20.2 What are control groups? 20-9
20.3 An example: the pids controller 20-16
20.4 Creating, destroying, and populating a cgroup 20-20
20.5 Exercises 20-28
20.6 Enabling and disabling controllers 20-34
20.7 Exercises 20-49
20.8 Appendix: Systemd and cgroups 20-53

Enabling and disabling controllers

Each cgroup v2 directory contains two files:
cgroup.controllers: lists controllers that are available in
this cgroup
cgroup.subtree_control: used to list/modify set of
controllers that are enabled in this cgroup

Always a subset of cgroup.controllers

Together, these files allow different controllers to be
managed to different levels of granularity in v2 hierarchy

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-35 §20.6

Available controllers: cgroup.controllers

$ cat /sys/fs/cgroup/cgroup.controllers
cpuset cpu io memory hugetlb pids rdma misc dmem

cgroup.controllers lists the controllers that are available
in a cgroup
Certain “automatic” controllers are always available in every
cgroup, and are not listed in cgroup.controllers

devices, freezer, network, perf_event

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-36 §20.6

Available controllers: cgroup.controllers

$ cat /sys/fs/cgroup/cgroup.controllers
cpuset cpu io memory hugetlb pids rdma misc

A controller may not be available because:
Controller is not enabled in parent cgroup

(Does not apply for “automatic” controllers)
Controller was disabled at boot time

Using the boot option cgroup_disable=name[,...]

Kernel was built without support for that controller
The same controller is already in use in cgroups v1

Cgroups v1 and v2 can coexist (so-called “hybrid mode”), but
a controller can be used in only one version

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-37 §20.6

Enabling controllers: cgroup.subtree_control

cgroup.subtree_control is used to show or modify the set
of controllers that are enabled in a cgroup:
cd /sys/fs/cgroup/
cat cgroup.subtree_control
cpu io memory pids

Set of controllers enabled in root cgroup will depend on
distro and systemd configuration and version

Contents of cgroup.subtree_control are always a subset
of cgroup.controllers

I.e., can’t enable controller that is not available in a cgroup
Controllers are enabled/disabled by writing to this file:
echo '+cpuset' > cgroup.subtree_control # Enable a controller
cat cgroup.subtree_control
cpuset cpu io memory pids
echo '-cpuset' > cgroup.subtree_control # Disable a controller
cat cgroup.subtree_control
cpu io memory pids

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-38 §20.6

Enabling controllers: cgroup.subtree_control

Enabling a controller in cgroup.subtree_control:
Allows resource to be controlled in child cgroups
Causes controller-specific attribute files to appear in
each child directory

Attribute files in child cgroups are used by process
managing parent cgroup to manage resource allocation
into child cgroups

This is a significant difference from cgroups v1

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-39 §20.6

cgroup.subtree_control example

Review situation in root cgroup:
cd /sys/fs/cgroup/
cat cgroup.controllers
cpuset cpu io memory hugetlb pids misc
cat cgroup.subtree_control
cpu io memory pids

Create a small subhierarchy:
mkdir -p grp_x/grp_y

Controllers available in grp_x are those that were enabled at
level above; no controllers are enabled in grp_x:
cat grp_x/cgroup.controllers
cpu io memory pids
cat grp_x/cgroup.subtree_control # Empty...

Consequently, no controllers are available in grp_y:
cat grp_x/grp_y/cgroup.controllers # Empty...

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-40 §20.6

cgroup.subtree_control example

List cpu.* files in grp_y:
cd /sys/fs/cgroup/grp_x
ls grp_y/cpu.*
grp_y/cpu.pressure grp_y/cpu.stat

(These two files show CPU-related statistics and are present
in every cgroup)

Enabling cpu controller in parent cgroup (grp_x) causes
controller interface files to appear in child (grp_y) cgroup:
echo '+cpu' > cgroup.subtree_control
ls grp_y/cpu.*
grp_y/cpu.idle grp_y/cpu.max.burst grp_y/cpu.stat
grp_y/cpu.weight.nice grp_y/cpu.max grp_y/cpu.pressure
grp_y/cpu.weight

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-41 §20.6

cgroup.subtree_control example

After enabling controller in parent cgroup, we can limit
resources in child cgroup...
Set hard CPU limit of 50% in child cgroup (grp_y):
echo '50000 100000' > grp_y/cpu.max

In another window, we start a program that burns CPU time
and displays statistics; and we move it into grp_y:
echo 6445 > grp_y/cgroup.procs # 6445 is PID of burner process

In the other terminal, we see:
$./cpu_burner
[6445] %CPU = 99.86
[6445] %CPU = 99.83
...
[6445] %CPU = 83.52
[6445] %CPU = 50.00
[6445] %CPU = 50.00
...

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-42 §20.6

Managing controllers to differing levels of granularity

A controller is available in child cgroup only if it is enabled
in parent cgroup:
cat cgroup.controllers
cpuset cpu io memory hugetlb pids
cat cgroup.subtree_control
cpu memory pids
cat grp1/cgroup.controllers
cpu memory pids

cpuset, io, and hugetlb are not available in grp1

In grp1, none of the available controllers is initially enabled,
so no controllers are available at next level:
cat grp1/cgroup.controllers
cpu memory pids
cat grp1/cgroup.subtree_control # Empty
mkdir grp1/{grp10,grp11} # Make grandchild cgroups
cat grp1/grp2/cgroup.controllers # Empty

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-43 §20.6

Managing controllers to differing levels of granularity

If we enable cpu in grp1, it becomes available at next level
echo '+cpu' > grp1/cgroup.subtree_control
cat grp1/grp10/cgroup.controllers
cpu

And cpu interface files appear in grp1/{grp10,grp11}
Here, cpu is being managed at finer granularity than memory

We can make distinct cpu allocation decisions for processes
in grp10 vs processes in grp11
But we can’t make distinct memory allocation decisions

grp10 and grp11 will share memory allocation from grp1

We did this by design (so we can manage different
resources to different levels of granularity):

We want distinct CPU allocations in grp10 and grp11
We want grp10 and grp11 to share a memory allocation

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-44 §20.6

Top-down constraints

Child cgroups are always subject to any resource constraints
established in ancestor cgroups

⇒ Descendant cgroups can’t relax constraints imposed by
ancestor cgroups

If a controller is disabled in a cgroup (i.e., not present in
cgroup.subtree_control), it cannot be enabled in any
descendants of the cgroup

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-45 §20.6

No internal tasks rule

Cgroups v2 enforces a rule often expressed as: “a cgroup
can’t have both child cgroups and member processes”

I.e., only leaf nodes can have member processes
The “no internal tasks” rule

But the rule more precisely is:
A cgroup can’t both:

distribute a resource to child cgroups (i.e., enable controllers
in cgroup.subtree_control), and
have member processes

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-46 §20.6

No internal tasks rule

Revised statement: “A cgroup can’t both distribute resources
and have member processes”
Conversely (1):

A cgroup can have member processes and child cgroups...
if it does not enable controllers for child cgroups

Conversely (2):
If cgroup has child cgroups and processes, the processes must
be moved elsewhere before enabling controllers

E.g., processes could be moved to child cgroups

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-47 §20.6

No internal tasks rule

Further details on the no internal tasks rule:
The root cgroup is (necessarily) an exception to this rule
The rule is irrelevant for “automatic” controllers

Because those controllers (e.g., freezer, devices) are
always available (i.e., don’t need to be enabled)

" The rule changed for certain controllers in Linux 4.14
(The so-called “threaded controllers”)

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-48 §20.6

Outline
20 Cgroups: Introduction 20-1
20.1 Preamble 20-3
20.2 What are control groups? 20-9
20.3 An example: the pids controller 20-16
20.4 Creating, destroying, and populating a cgroup 20-20
20.5 Exercises 20-28
20.6 Enabling and disabling controllers 20-34
20.7 Exercises 20-49
20.8 Appendix: Systemd and cgroups 20-53

Exercises

1 This exercise demonstrates that resource constraints apply in a
top-down fashion, using the cgroups v2 pids controller.

a To simplify the following steps, change your current directory to
the cgroup root directory (/sys/fs/cgroup).

b Create a child and grandchild directory in the cgroup filesystem
and enable the PIDs controller in the root directory and the first
subdirectory:
mkdir xxx
mkdir xxx/yyy
echo '+pids' > cgroup.subtree_control
echo '+pids' > xxx/cgroup.subtree_control

c Set an upper limit of 10 tasks in the child cgroup, and an upper
limit of 20 tasks in the grandchild cgroup:
echo '10' > xxx/pids.max
echo '20' > xxx/yyy/pids.max

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-50 §20.7

Exercises

d In another terminal, use the supplied cgroups/fork_bomb.c
program.
fork_bomb <num-children> [<child-sleep>]
Default: 0 300

Run the program with the following command line, which (after
the user presses Enter) will cause the program to create 30
children that sleep for (the default) 300 seconds:
$./fork_bomb 30

e The parent process in the fork_bomb program prints its PID.
Return to the first terminal and place the parent process in the
grandchild cgroup:
echo <parent-PID> > xxx/yyy/cgroup.procs

f In the second terminal window, press Enter, so that the parent
process now creates the child processes. How many children does
it successfully create?

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-51 §20.7

Exercises

2 This exercise demonstrates what happens if we try to enable a
controller in a cgroup that has member processes.

a Under the cgroup root directory, create a new cgroup named
child, and enable the memory controller in the root cgroup:
cd /sys/fs/cgroup # or: cd /sys/fs/cgroup/unified
mkdir child
echo '+memory' > cgroup.subtree_control

b Start a process running sleep, and place its into the child cgroup:
sleep 1000 &
echo $! > child/cgroup.procs

c What happens if we now try to enable the memory controller in the
child cgroup via the following command?
echo '+memory' > child/cgroup.subtree_control

d Does the result differ if we reverse the order of the preceding steps
(i.e., enable the controller, then place a process in the cgroup)?

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-52 §20.7

Outline
20 Cgroups: Introduction 20-1
20.1 Preamble 20-3
20.2 What are control groups? 20-9
20.3 An example: the pids controller 20-16
20.4 Creating, destroying, and populating a cgroup 20-20
20.5 Exercises 20-28
20.6 Enabling and disabling controllers 20-34
20.7 Exercises 20-49
20.8 Appendix: Systemd and cgroups 20-53

Systemd slices

Systemd makes heavy use of cgroups
And provides a CLI for managing cgroups

Organizes cgroups into slices–(sub)hierarchies of related
cgroups

Slices are used to organize services, scopes, and other slices
Systemd manages cgroups in two principal slices:

system.slice: cgroups used to manage system services
user.slice: cgroups used to manage user sessions and
processes

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-54 §20.8

Systemd and cgroups

In the systemd model, processes are grouped in “units”, with
associated cgroups
Units are either:

Persistent: preconfigured units created on system boot,
according to specifications in unit files
Transient: units created on-the-fly to run commands;
disappear on command termination

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-55 §20.8

Systemd services and scopes

A service is a daemon or long-running process launched by
systemd

Service is started and managed by systemd
Characteristics of service are defined via a unit file

Placed in cgroup with name suffixed by “.service”
A scope is a cgroup subhierarchy for managing externally
created processes

I.e., used for a set of processes not created directly by
systemd

E.g., processes started by a window manager, interactive user
session, a web browser, or systemd-run
No associated unit file; instead created programmatically via
systemd’s D-Bus API

Placed in cgroup with name suffixed by “.scope”

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-56 §20.8

systemd-cgls : show cgroup contents

systemd-cgls lists cgroup hierarchy with member processes
$ systemd-cgls
CGroup /:
-.slice

user.slice
user-0.slice

...
user@0.service ...

...
init.scope

11370 /usr/lib/systemd/systemd --user
11372 (sd-pam)

user-1000.slice
user@1000.service ...

...
app.slice

app-org.gnome.Terminal.slice
2124788 bash
2130001 systemd-cgls

...

It is possible to list just part of the hierarchy:
$ systemd-cgls /sys/fs/cgroup/user.slice/user-1000.slice/user@1000.service

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-57 §20.8

systemd-cgtop : list resource usage by cgroup

systemd-cgtop lists cgroups with resource usage (CPU,
memory, I/O)
$ systemd-cgtop
CGroup Tasks %CPU Memory Input/s Output/s
/ 1747 133.7 15G 73.9M 22.6M
user.slice 1278 116.7 47.3G 73.9M 39.6K
user.slice/user-1000.slice 1270 116.8 45.8G 73.9M 39.6K
user.slic.../user@1000.service 1251 116.8 45.8G 73.9M 39.6K
system.slice 137 0.2 7.8G - -
system.sl...stemd-oomd.service 1 0.1 1.5M - -
system.slice/tuned.service 4 0.0 19.5M - -
system.sl...md-userdbd.service 4 0.0 4.3M - -
...

Ordered by highest resource usage (CPU, by default)
Constantly refreshed (in fashion of top(1))

To list part of hierarchy:
$ systemd-cgtop user.slice/user-1000.slice/user@1000.service/app.slice

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-58 §20.8

systemd-run : run program in a systemd transient unit

systemd-run runs a command in a new transient unit:
$ sudo systemd-run --scope -p CPUQuota=50% lsp/timers/cpu_burner
Running as unit: run-r362eae10dcc14fe184f224ef506b88cd.scope;
invocation ID: 2b42484dbbd2470eb7c53dabb8608b5a
[2149503] %CPU = 51.41 (0)
[2149503] %CPU = 49.84 (1)
[2149503] %CPU = 49.94 (2)

Displays a run unit identifier we can use in other commands
--scope runs command in a "scope" unit, rather than a
"service" unit

Main purpose here: associates run unit with terminal, so we
can see stdout

–p is used to set a resource limit for cgroup
Can be specified multiple times, to set multiple limits
systemd.resource-control(5) documents the various limits
that can be set

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-59 §20.8

systemctl status : view status of a systemd unit

systemctl status shows info about a systemd unit:
$ systemctl status run-r362eae10dcc14fe184f224ef506b88cd.scope
• run-r362eae10dcc....scope - /home/mtk/lsp/timers/cpu_burner

Loaded: loaded (/run/systemd/transient/run-r362eae....scope; transient
Transient: yes

Active: active (running) since Sat 2025-03-01 10:55:07 NZDT; 35min ago
Invocation: 2b42484dbbd2470eb7c53dabb8608b5a

Tasks: 1 (limit: 76492)
Memory: 156K (peak: 548K)

CPU: 3.189s
CGroup: /system.slice/run-r362eae10dcc14fe184f224ef506b88cd.scope

2149503 /home/mtk/lsp/timers/cpu_burner

Includes number of tasks, CPU + memory usage, and cgroup

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-60 §20.8

systemctl set-property : set resource limits

systemctl set-property allows us to change limits associated
with a systemd unit:
$ sudo systemctl set-property run-r362eae10dcc[...] CPUQuota=20%

Returning to terminal window where cpu_burner is running,
we see:
[2149503] %CPU = 20.30 (13)
[2149503] %CPU = 19.96 (14)
[2149503] %CPU = 20.07 (15)

Can set multiple limits in a single command:
$ sudo systemctl set-property run-r362eae[...] CPUQuota=20% MemoryMax=500K

systemd.resource-control(5)

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-61 §20.8

Other systemctl commands

systemctl freeze, systemctl thaw : freeze and thaw a unit
systemctl stop

Graceful termination of a unit
systemctl kill

A more forceful termination of a unit

Linux Security and Isolation APIs ©2026 M. Kerrisk Cgroups: Introduction 20-62 §20.8

