
Linux/UNIX System Programming

POSIX Shared Memory

Michael Kerrisk, man7.org © 2026

mtk@man7.org

January 2026

Outline Rev: # d49d0b54be95

26 POSIX Shared Memory 26-1
26.1 Overview 26-3
26.2 Creating and opening shared memory objects 26-8
26.3 Using shared memory objects 26-23
26.4 Synchronizing access to shared memory 26-32
26.5 API summary 26-42
26.6 Exercises 26-44

Outline
26 POSIX Shared Memory 26-1
26.1 Overview 26-3
26.2 Creating and opening shared memory objects 26-8
26.3 Using shared memory objects 26-23
26.4 Synchronizing access to shared memory 26-32
26.5 API summary 26-42
26.6 Exercises 26-44

Shared memory

Data is exchanged by placing it in memory pages shared
by multiple processes

Pages are in user virtual address space of each process

Physical memory

Shared memory region

Pages not

actually

contiguous

Process A page table

Page table entries for

shared memory region

Process B page table

Page table entries for

shared memory region

Linux/UNIX System Programming ©2026 M. Kerrisk POSIX Shared Memory 26-4 §26.1

Shared memory

Data transfer is not mediated by kernel
User-space copy makes data visible to other processes

⇒ Very fast IPC
Compare with (e.g.) pipes and sockets:

Send requires copy from user to kernel memory
Receive requires copy from kernel to user memory

But, need to synchronize access to shared memory
E.g., to prevent simultaneous updates
Commonly, semaphores are used

Linux/UNIX System Programming ©2026 M. Kerrisk POSIX Shared Memory 26-5 §26.1

POSIX shared memory objects

Implemented (on Linux) as files in a dedicated tmpfs
filesystem

tmpfs == memory-based filesystem that employs swap
space when needed

Objects have kernel persistence
Objects exist until explicitly deleted, or system reboots
Can map an object, change its contents, and unmap
Changes will be visible to next process that maps object

Accessibility: user/group owner + permission mask

Linux/UNIX System Programming ©2026 M. Kerrisk POSIX Shared Memory 26-6 §26.1

POSIX shared memory APIs

shm_open() : open existing shared memory (SHM)
object/create and open new SHM object

Returns file descriptor that refers to open object
ftruncate() : set size of SHM object
mmap() : map SHM object into caller’s address space
close() : close file descriptor returned by shm_open()
shm_unlink() : remove SHM object name, mark for deletion
once all processes have closed
munmap() : unmap SHM object (or part thereof) from
caller’s address space
Compile with cc -lrt

(No longer needed since glibc 2.34)
shm_overview(7) manual page

Linux/UNIX System Programming ©2026 M. Kerrisk POSIX Shared Memory 26-7 §26.1

Outline
26 POSIX Shared Memory 26-1
26.1 Overview 26-3
26.2 Creating and opening shared memory objects 26-8
26.3 Using shared memory objects 26-23
26.4 Synchronizing access to shared memory 26-32
26.5 API summary 26-42
26.6 Exercises 26-44

Creating/opening a shared memory object: shm_open()

#include <fcntl.h> /* Defines O_* constants */
#include <sys/stat.h> /* Defines mode constants */
#include <sys/mman.h>
int shm_open(const char *name, int oflag, mode_t mode);

Creates and opens a new object, or opens an existing object
name : name of object (/somename)
Returns file descriptor on success, or –1 on error

This FD is used in subsequent APIs to refer to SHM
(The close-on-exec flag is automatically set for the FD)

[TLPI §54.2]
Linux/UNIX System Programming ©2026 M. Kerrisk POSIX Shared Memory 26-9 §26.2

Creating/opening a shared memory object: shm_open()

#include <fcntl.h> /* Defines O_* constants */
#include <sys/stat.h> /* Defines mode constants */
#include <sys/mman.h>
int shm_open(const char *name, int oflag, mode_t mode);

oflag specifies flags controlling operation of call
O_CREAT: create object if it does not already exist
O_EXCL: (with O_CREAT) create object exclusively

Give error if object already exists
O_RDONLY: open object for read-only access
O_RDWR: open object for read-write access

NB: No O_WRONLY flag...
O_TRUNC: truncate an existing object to zero length

Contents of existing object are destroyed

Linux/UNIX System Programming ©2026 M. Kerrisk POSIX Shared Memory 26-10 §26.2

Creating/opening a shared memory object: shm_open()

#include <fcntl.h> /* Defines O_* constants */
#include <sys/stat.h> /* Defines mode constants */
#include <sys/mman.h>
int shm_open(const char *name, int oflag, mode_t mode);

mode : permission bits for new object
RWX for user / group / other
ANDed against complement of process umask
" Required argument; specify as 0 if opening existing object

Linux/UNIX System Programming ©2026 M. Kerrisk POSIX Shared Memory 26-11 §26.2

Sizing a shared memory object

New SHM objects have length 0
We must set size using ftruncate(fd, size)

Bytes in newly extended object are initialized to 0
If existing object is shrunk, truncated data is lost
Typically, ftruncate() is called before mmap()

But the calls can also be in the reverse order

Can obtain size of existing object using fstat(fd, &statbuf)
st_size field of stat structure

Linux/UNIX System Programming ©2026 M. Kerrisk POSIX Shared Memory 26-12 §26.2

Mapping a shared memory object: mmap()

#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

Complex, general-purpose API for creating memory
mapping in caller’s virtual address space

15+ bits employed in flags
See TLPI Ch. 49 and mmap(2)

We consider only use with POSIX SHM
In practice, only a few decisions to make

Usually just length, prot, and maybe offset

Linux/UNIX System Programming ©2026 M. Kerrisk POSIX Shared Memory 26-13 §26.2

Mapping a shared memory object: mmap()

#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

fd : file descriptor specifying object to map
Use FD returned by shm_open()
Note: once mmap() returns, fd can already be closed
without affecting the mapping

addr : address at which to place mapping in caller’s virtual
address space

Let’s look at a picture...

Linux/UNIX System Programming ©2026 M. Kerrisk POSIX Shared Memory 26-14 §26.2

Process memory layout (simplified)

argv, environ
Stack

(grows downwards)

Heap
(grows upwards)

Uninitialized data (bss)
Initialized data

Text
(program code)

Unallocated memory
(various mappings might appear
here; e.g., shared libraries)

In
cr

ea
sin

g
vi

rt
ua

la
dr

es
se

s

Linux/UNIX System Programming ©2026 M. Kerrisk POSIX Shared Memory 26-15 §26.2

Mapping a shared memory object: mmap()

include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

addr : address at which to place mapping in caller’s virtual
address space

But, this address may already be occupied
Therefore, kernel takes addr as only a hint
Ignored if address is already occupied

addr == NULL ⇒ let system choose address
Normally use NULL for POSIX SHM objects

mmap() returns address actually used for mapping
Treat this like a normal C pointer

On error, mmap() returns MAP_FAILED

Linux/UNIX System Programming ©2026 M. Kerrisk POSIX Shared Memory 26-16 §26.2

Mapping a shared memory object: mmap()

include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

length : size of mapping
Normally should be ≤ size of SHM object
System rounds up to multiple of system page size

sysconf(_SC_PAGESIZE)

offset : starting point of mapping in underlying file or SHM
object

Must be multiple of system page size
Commonly specified as 0 (map from start of object)

Linux/UNIX System Programming ©2026 M. Kerrisk POSIX Shared Memory 26-17 §26.2

Mapping a shared memory object: mmap()

include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

prot : memory protections
⇒ set protection bits in page-table entries for mapping

(Protections can later be changed using mprotect(2))

PROT_READ: for read-only mapping
PROT_READ | PROT_WRITE: for read-write mapping
Must be consistent with access mode of shm_open()

E.g., can’t specify O_RDONLY to shm_open() and then
PROT_READ | PROT_WRITE for mmap()

Also PROT_EXEC: contents of memory can be executed

Linux/UNIX System Programming ©2026 M. Kerrisk POSIX Shared Memory 26-18 §26.2

Mapping a shared memory object: mmap()

include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

flags : bit flags controlling behavior of call
POSIX SHM objects: need only MAP_SHARED

MAP_SHARED == make caller’s modifications to mapped
memory visible to other processes mapping same object

Linux/UNIX System Programming ©2026 M. Kerrisk POSIX Shared Memory 26-19 §26.2

mmap() arguments for POSIX shared memory

mmap(addr, length,
prot,
flags,
fd,
offset);

Address hint for mapping
(NULL == kernel chooses address)

Length of mapping (rounded
up to page-size multiple)

Protections bit mask for
page tables (PROT_READ,
PROT_WRITE, PROT_EXEC)

Mapping flags (bit mask)
MAP_SHARED: changes propagate

to mapped object and
to other mappings

File descriptor
referring to POSIX
shared memory object

Starting point of mapping in underlying
object (must be page-size multiple)

Linux/UNIX System Programming ©2026 M. Kerrisk POSIX Shared Memory 26-20 §26.2

Example: pshm/pshm_create_simple.c

./pshm_create_simple /shm-object-name size

Create a SHM object with given name and size

Linux/UNIX System Programming ©2026 M. Kerrisk POSIX Shared Memory 26-21 §26.2

Example: pshm/pshm_create_simple.c

size_t size = atoi(argv[2]);

int fd = shm_open(argv[1], O_CREAT | O_EXCL | O_RDWR, S_IRUSR|S_IWUSR);

ftruncate(fd, size);

void *addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

1 SHM object created with RW permission for user, opened
with read-write access mode

2 fd returned by shm_open() is used in ftruncate() + mmap()
3 Same size is used in ftruncate() + mmap()
4 mmap() not necessary, but demonstrates how it’s done
5 Mapping protections PROT_READ | PROT_WRITE consistent

with O_RDWR access mode

Linux/UNIX System Programming ©2026 M. Kerrisk POSIX Shared Memory 26-22 §26.2

Outline
26 POSIX Shared Memory 26-1
26.1 Overview 26-3
26.2 Creating and opening shared memory objects 26-8
26.3 Using shared memory objects 26-23
26.4 Synchronizing access to shared memory 26-32
26.5 API summary 26-42
26.6 Exercises 26-44

Using shared memory objects

Address returned by mmap() can be used just like any C
pointer

Usual approach: treat as pointer to some structured type
Can read and modify memory via pointer

[TLPI §48.6]
Linux/UNIX System Programming ©2026 M. Kerrisk POSIX Shared Memory 26-24 §26.3

Example: pshm/pshm_write.c

./pshm_write /shm-name string

Open existing SHM object shm-name and copy string to it

Linux/UNIX System Programming ©2026 M. Kerrisk POSIX Shared Memory 26-25 §26.3

Example: pshm/pshm_write.c

int fd = shm_open(argv[1], O_RDWR, 0);
size_t len = strlen(argv[2]);
ftruncate(fd, len);
printf("Resized to %ld bytes\n", (long) len);

char *addr = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED,
fd, 0);

close(fd); /* 'fd' is no longer needed */

printf("copying %ld bytes\n", (long) len);
memcpy(addr, argv[2], len);

1 Open existing SHM object
2 Resize object to match length of command-line argument
3 Map object at address chosen by system
4 Copy argv[2] to object (without ’\0’)
5 SHM object is closed and unmapped on process termination

Linux/UNIX System Programming ©2026 M. Kerrisk POSIX Shared Memory 26-26 §26.3

Example: pshm/pshm_read.c

./pshm_read /shm-name

Open existing SHM object shm-name and write the
characters it contains to stdout

Linux/UNIX System Programming ©2026 M. Kerrisk POSIX Shared Memory 26-27 §26.3

Example: pshm/pshm_read.c

int fd = shm_open(argv[1], O_RDONLY, 0);

struct stat sb;
fstat(fd, &sb);

char *addr = mmap(NULL, sb.st_size, PROT_READ, MAP_SHARED, fd, 0);

close(fd); /* 'fd' is no longer needed */

write(STDOUT_FILENO, addr, sb.st_size);
write(STDOUT_FILENO, "\n", 1);

Open existing SHM object
Use fstat() to discover size of object
Map the object, using size from fstat() (in sb.st_size)
Write all bytes from object to stdout, followed by newline

Linux/UNIX System Programming ©2026 M. Kerrisk POSIX Shared Memory 26-28 §26.3

Pointers in shared memory

A little care is required when storing pointers in SHM:
Assuming we let system choose address at which to place
SHM (as is recommended practice)
⇒ SHM may be placed at different address in each process
Suppose we want to build dynamic data structures, with
pointers inside shared memory...

E.g., linked list
⇒ Must use relative offsets, not absolute addresses

Absolute address has no meaning if mapping is at different
location in another process

[TLPI §48.6]
Linux/UNIX System Programming ©2026 M. Kerrisk POSIX Shared Memory 26-29 §26.3

Pointers in shared memory

Suppose we have situation at right
baseaddr is start of shared
memory region
Want to store pointer to target in
*p

" Wrong way:
*p = target

Correct method (relative offset):
*p = target - baseaddr;

To dereference “pointer”:
target = baseaddr + *p;

Linux/UNIX System Programming ©2026 M. Kerrisk POSIX Shared Memory 26-30 §26.3

The /dev/shm filesystem

On Linux:
tmpfs filesystem used to implement POSIX SHM is mounted at
/dev/shm
Can list objects in directory with ls(1)

ls –l shows permissions, ownership, and size of each object
$ ls -l /dev/shm
-rw-------. 1 mtk mtk 4096 Oct 27 13:58 myshm
-rw-------. 1 mtk mtk 32 Oct 27 13:57 sem.mysem

POSIX named semaphores are also visible in /dev/shm
As small SHM objects with names prefixed with “sem.”

Can delete objects with rm(1)

Linux/UNIX System Programming ©2026 M. Kerrisk POSIX Shared Memory 26-31 §26.3

Outline
26 POSIX Shared Memory 26-1
26.1 Overview 26-3
26.2 Creating and opening shared memory objects 26-8
26.3 Using shared memory objects 26-23
26.4 Synchronizing access to shared memory 26-32
26.5 API summary 26-42
26.6 Exercises 26-44

Synchronizing access to shared memory

Accesses to SHM object by different processes must be
synchronized

Prevent simultaneous updates
Prevent read of partially updated data

Semaphores are a common technique
POSIX unnamed semaphores are often convenient, since:

Semaphore can be placed inside shared memory region
(And thus, automatically shared)

We avoid task of creating name for semaphore

Linux/UNIX System Programming ©2026 M. Kerrisk POSIX Shared Memory 26-33 §26.4

Synchronizing access to shared memory

Other synchronization schemes are possible
E.g., if using SHM to transfer large data volumes:

Using semaphore pair to force alternating access is expensive
(two context switches on each transfer!)
Divide SHM into (logically numbered) blocks
Use pair of pipes to exchange metadata about filled and
emptied blocks (also integrates with poll()/epoll !)

Linux/UNIX System Programming ©2026 M. Kerrisk POSIX Shared Memory 26-34 §26.4

Example: synchronizing with unnamed semaphores

Example application maintains sequence number in SHM
object
Source files:

pshm/pshm_seqnum.h: defines structure stored in SHM
object
pshm/pshm_seqnum_init.c:

Create and open SHM object
Initialize semaphore and (optionally) sequence number inside
SHM object

pshm/pshm_seqnum_get.c:
Open existing SHM object
Display current value of sequence number
(Optionally) increase sequence number value

Linux/UNIX System Programming ©2026 M. Kerrisk POSIX Shared Memory 26-35 §26.4

Example: pshm/pshm_seqnum.h

#include <sys/mman.h>
#include <fcntl.h>
#include <semaphore.h>
#include <sys/stat.h>
#include "tlpi_hdr.h"

struct shmbuf { /* Shared memory buffer */
sem_t sem; /* Semaphore to protect access */
int seqnum; /* Sequence number */

};

Header file used by pshm/pshm_seqnum_init.c and
pshm/pshm_seqnum_get.c
Includes headers needed by both programs
Defines structure used for SHM object, containing:

Unnamed semaphore that guards access to sequence
number
Sequence number

Linux/UNIX System Programming ©2026 M. Kerrisk POSIX Shared Memory 26-36 §26.4

Example: pshm/pshm_seqnum_init.c

./pshm_seqnum_init /shm-name [init-value]

Create and open SHM object
Reset semaphore inside object to 1 (i.e., semaphore available)
Initialize sequence number

Linux/UNIX System Programming ©2026 M. Kerrisk POSIX Shared Memory 26-37 §26.4

Example: pshm/pshm_seqnum_init.c

shm_unlink(argv[1]);
int fd = shm_open(argv[1], O_CREAT | O_EXCL | O_RDWR, S_IRUSR | S_IWUSR);

ftruncate(fd, sizeof(struct shmbuf));
struct shmbuf *shmp = mmap(NULL, sizeof(struct shmbuf),

PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
sem_init(&shmp->sem, 1, 1);
if (argc > 2)

shmp->seqnum = atoi(argv[2]);

1 Delete previous instance of SHM object, if it exists
2 Create and open SHM object
3 Use ftruncate() to adjust size of object to match structure
4 Map object, using size of structure
5 Initialize semaphore state to “available”

pshared specified as 1, for process sharing of semaphore
6 If argv[2] supplied, initialize sequence # to that value

Newly extended bytes of SHM object are initialized to 0
Linux/UNIX System Programming ©2026 M. Kerrisk POSIX Shared Memory 26-38 §26.4

Example: pshm/pshm_seqnum_get.c

./pshm_seqnum_get /shm-name [run-length]

Open existing SHM object
Fetch and display current value of sequence number in SHM
object shm-name
If run-length supplied, add to sequence number

Linux/UNIX System Programming ©2026 M. Kerrisk POSIX Shared Memory 26-39 §26.4

Example: pshm/pshm_seqnum_get.c

int fd = shm_open(argv[1], O_RDWR, 0);

struct shmbuf *shmp = mmap(NULL, sizeof(struct shmbuf),
PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

Open existing SHM object
Map object, using size of shmbuf structure

Linux/UNIX System Programming ©2026 M. Kerrisk POSIX Shared Memory 26-40 §26.4

Example: pshm/pshm_seqnum_get.c

sem_wait(&shmp->sem);
printf("Current value of sequence number: %d\n", shmp->seqnum);

if (argc > 2) {
int runLength = atoi(argv[2]);
if (runLength <= 0)

fprintf(stderr, "Invalid run-length\n");
else {

sleep(3); /* Make update slow */
shmp->seqnum += runLength;
printf("Updated sequence number\n");

}
}
sem_post(&shmp->sem);

Reserve semaphore before touching sequence number
Display current value of semaphore
If (nonnegative) argv[2] provided, add to sequence number

Sleep during update, to see that other processes are blocked
Release semaphore

Linux/UNIX System Programming ©2026 M. Kerrisk POSIX Shared Memory 26-41 §26.4

Outline
26 POSIX Shared Memory 26-1
26.1 Overview 26-3
26.2 Creating and opening shared memory objects 26-8
26.3 Using shared memory objects 26-23
26.4 Synchronizing access to shared memory 26-32
26.5 API summary 26-42
26.6 Exercises 26-44

API summary

int shm_open(const char *name, int oflag, mode_t mode);
// Open or create and open shared memory object
// Returns file descriptor

int ftruncate(int fd, off_t length);
// Set size of shared memory object referred to by 'fd'

void *mmap(void *addr, size_t length, int prot,
int flags, int fd, off_t offset);
// Map SHM object referred to by 'fd'

int fstat(int fd, struct stat *statbuf);
// Retrieve 'stat' structure describing SHM object
// (e.g., statbuf->st_size is object size)

int sem_init(sem_t *sem, int pshared, unsigned int value);
// Initialize POSIX unnamed semaphore

// Operations on POSIX semaphores:
int sem_post(sem_t *sem); // Increment
int sem_wait(sem_t *sem); // Decrement

Linux/UNIX System Programming ©2026 M. Kerrisk POSIX Shared Memory 26-43 §26.5

Outline
26 POSIX Shared Memory 26-1
26.1 Overview 26-3
26.2 Creating and opening shared memory objects 26-8
26.3 Using shared memory objects 26-23
26.4 Synchronizing access to shared memory 26-32
26.5 API summary 26-42
26.6 Exercises 26-44

Exercises

1 Write two programs that exchange a stream of data of arbitrary length via a POSIX
shared memory object [Shared header file: pshm/pshm_xfr.h]:

The “writer” creates and initializes the shared memory object and semaphores
used by both programs, and then reads blocks of data from stdin and copies
them a block at a time to the shared memory region
[Template: pshm/ex.pshm_xfr_writer.c].
The “reader” copies each block of data from the shared memory object to
stdout [Template: pshm/ex.pshm_xfr_reader.c].

stdin Writer Shared
Memory Reader stdout

Note the following points:
Use the structure defined in pshm/pshm_xfr.h for your shared memory.

[Exercise continues on next page]

Linux/UNIX System Programming ©2026 M. Kerrisk POSIX Shared Memory 26-45 §26.6

Exercises

You must ensure that the writer and reader have exclusive, alternating access
to the shared memory region (so that, for example, the writer does not copy
new data into the region before the reader has copied the current data to
stdout). The following diagram shows how two semaphores can be used to
achieve this. The semaphores should be initialized as wsem=1 and rsem=0, so
that the writer has first access to the shared memory.

sem_wait(wsem)

Transfer data to

shared memory

sem_post(rsem)

Writer

sem_wait(rsem)

Transfer data from

shared memory

sem_post(wsem)

Reader

Shared memory

(The simplest approach is to use two unnamed semaphores stored inside the
shared memory object; see the structure definition in pshm/pshm_xfr.h.)
[Exercise continues on next page]

Linux/UNIX System Programming ©2026 M. Kerrisk POSIX Shared Memory 26-46 §26.6

Exercises

When the “writer” reaches end of file, it should provide an indication to the
“reader” that there is no more data. To do this, maintain a byte-count field in
the shared memory region which the “writer” uses to inform the “reader” how
many bytes are to be written. Setting this count to 0 can be used to signal
end-of-file. Once it has sent the last data block, the “writer” should unlink the
shared memory object.
Test your programs using a large file that contains random data:

$ dd if=/dev/urandom of=infile count=100000
$./ex.pshm_xfr_writer < infile &
$./ex.pshm_xfr_reader > outfile
$ diff infile outfile

There is also a target in the Makefile for performing this test:

make pshm_xfr_test

[An optional exercise follows on the next page]

Linux/UNIX System Programming ©2026 M. Kerrisk POSIX Shared Memory 26-47 §26.6

Exercises

2 Create a file of a suitable size (e.g., 512 MB in the following):

$ dd if=/dev/urandom of=/tmp/infile count=1000000

Then edit the BUF_SIZE value in the pshm/pshm_xfr.h header file to vary the value
from 10’000 down to 10 in factors of 10, in each case measuring the time required
for the reader to complete execution:

$./ex.pshm_xfr_writer < /tmp/infile &
$ time ./ex.pshm_xfr_reader > /dev/null

What is the reason for the variation in the time measurements?

Linux/UNIX System Programming ©2026 M. Kerrisk POSIX Shared Memory 26-48 §26.6

