
Linux/UNIX System Programming

File I/O

Michael Kerrisk, man7.org © 2026

mtk@man7.org

January 2026

Outline Rev: # d49d0b54be95

3 File I/O 3-1
3.1 File I/O overview 3-3
3.2 open(), read(), write(), and close() 3-8
3.3 API summary 3-20
3.4 Exercises 3-22

Outline
3 File I/O 3-1
3.1 File I/O overview 3-3
3.2 open(), read(), write(), and close() 3-8
3.3 API summary 3-20
3.4 Exercises 3-22

Files

“On UNIX, everything is a file”
More correctly: “everything is a file descriptor”

Note: the term file can be ambiguous:
A generic term, covering disk files, directories, sockets,
FIFOs, terminals and other devices and so on
Or specifically, a disk file in a filesystem
To clearly distinguish the latter, the term regular file is
sometimes used

Linux/UNIX System Programming ©2026 M. Kerrisk File I/O 3-4 §3.1

System calls versus stdio

C programs usually use stdio package for file I/O
Library functions layered on top of I/O system calls

System calls Library functions
file descriptor (int) file stream (FILE *)
open(), close() fopen(), fclose()
lseek() fseek(), ftell()
read() fgets(), fscanf(), fread() . . .
write() fputs(), fprintf(), fwrite(), . . .
– feof(), ferror()

We presume understanding of stdio ; ⇒ focus on system calls

Linux/UNIX System Programming ©2026 M. Kerrisk File I/O 3-5 §3.1

File descriptors

All I/O is done using file descriptors (FDs)
nonnegative integer that identifies an open file

Used for all types of files
terminals, regular files, pipes, FIFOs, devices, sockets, ...

3 FDs are normally available to programs run from shell:
(POSIX names are defined in <unistd.h>)

FD Purpose POSIX name stdio stream
0 Standard input STDIN_FILENO stdin
1 Standard output STDOUT_FILENO stdout
2 Standard error STDERR_FILENO stderr

Linux/UNIX System Programming ©2026 M. Kerrisk File I/O 3-6 §3.1

Key file I/O system calls

Four fundamental calls:
open() : open a file, optionally creating it if needed

Returns file descriptor used by remaining calls
read() : input
write() : output
close() : close file descriptor

Linux/UNIX System Programming ©2026 M. Kerrisk File I/O 3-7 §3.1

Outline
3 File I/O 3-1
3.1 File I/O overview 3-3
3.2 open(), read(), write(), and close() 3-8
3.3 API summary 3-20
3.4 Exercises 3-22

open() : opening a file

#include <sys/stat.h>
#include <fcntl.h>
int open(const char *pathname, int flags, ... /* mode_t mode */);

Opens existing file / creates and opens new file
Arguments:

pathname identifies file to open
flags controls semantics of call

e.g., open an existing file vs create a new file

mode specifies permissions when creating new file
Returns: a file descriptor (nonnegative integer)

(Guaranteed to be lowest available FD)

[TLPI §4.3]
Linux/UNIX System Programming ©2026 M. Kerrisk File I/O 3-9 §3.2

open() flags argument

flags is formed by ORing (|) together:
Access mode

Specify exactly one of O_RDONLY, O_WRONLY, or O_RDWR

File creation flags (bit flags)
File status flags (bit flags)

[TLPI §4.3.1]
Linux/UNIX System Programming ©2026 M. Kerrisk File I/O 3-10 §3.2

File creation flags

File creation flags:
Affect behavior of open() call
Can’t be retrieved or changed

Examples:
O_CREAT: create file if it doesn’t exist

mode argument must be specified
Without O_CREAT, can open only an existing file (else:
ENOENT)

O_EXCL: create “exclusively”
Give an error (EEXIST) if file already exists
Only meaningful with O_CREAT

O_TRUNC: truncate existing file to zero length
I.e., discard existing file content

Linux/UNIX System Programming ©2026 M. Kerrisk File I/O 3-11 §3.2

File status flags

File status flags:
Affect semantics of subsequent file I/O
Can be retrieved and modified using fcntl()

Examples:
O_APPEND: always append writes to end of file
O_NONBLOCK: nonblocking I/O

Linux/UNIX System Programming ©2026 M. Kerrisk File I/O 3-12 §3.2

open() examples

Open existing file for reading:
fd = open("script.txt", O_RDONLY);

Open file for read-write, create if necessary, ensure we are
creator:
fd = open("myfile.txt", O_CREAT | O_EXCL | O_RDWR,

S_IRUSR | S_IWUSR); /* rw------- */

Open file for writing, creating if necessary:
fd = open("myfile.txt", O_CREAT | O_WRONLY, S_IRUSR);

File opened for writing, but created with only read
permission!

Linux/UNIX System Programming ©2026 M. Kerrisk File I/O 3-13 §3.2

read() : reading from a file

#include <unistd.h>
ssize_t read(int fd, void *buffer, size_t count);

fd : file descriptor
buffer : pointer to buffer to store data
count : number of bytes to read

(buffer must be at least this big)
(ssize_t and size_t are signed and unsigned integer types)

Returns:
> 0: number of bytes read

May be < count (e.g., terminal read() gets only one line)

0: end of file
–1: error

" No terminating null byte is placed at end of buffer
Linux/UNIX System Programming ©2026 M. Kerrisk File I/O 3-14 §3.2

write() : writing to a file

#include <unistd.h>
ssize_t write(int fd, const void *buffer, size_t count);

fd : file descriptor
buffer : pointer to data to be written
count : number of bytes to write
Returns:

Number of bytes written
May be < count (a “partial write”)
(e.g., write fills device, or insufficient space to write entire
buffer to nonblocking socket)

–1 on error

Linux/UNIX System Programming ©2026 M. Kerrisk File I/O 3-15 §3.2

close() : closing a file

#include <unistd.h>
int close(int fd);

fd : file descriptor
Returns:

0: success
–1: error

Really should check for error!
Accidentally closing same FD twice

I.e., detect program logic error
Filesystem-specific errors

E.g., NFS commit failures may be reported only at close()

Note: close() always releases FD, even on failure return
See close(2) manual page

Linux/UNIX System Programming ©2026 M. Kerrisk File I/O 3-16 §3.2

Example: copy.c

$./copy old-file new-file

A simple version of cp(1)

Linux/UNIX System Programming ©2026 M. Kerrisk File I/O 3-17 §3.2

Example: fileio/copy.c

Always remember to handle errors!
1 #define BUF_SIZE 1024
2 char buf[BUF_SIZE];
3
4 int infd = open(argv[1], O_RDONLY);
5 if (infd == -1) errExit("open %s", argv[1]);
6
7 int flags = O_CREAT | O_WRONLY | O_TRUNC;
8 mode_t mode = S_IRUSR | S_IWUSR | S_IRGRP; /* rw-r----- */
9 int outfd = open(argv[2], flags, mode);

10 if (outfd == -1) errExit("open %s", argv[2]);
11
12 ssize_t nread;
13 while ((nread = read(infd, buf, BUF_SIZE)) > 0)
14 if (write(outfd, buf, nread) != nread)
15 fatal("write() returned error or partial write occurred");
16 if (nread == -1) errExit("read");
17
18 if (close(infd) == -1) errExit("close");
19 if (close(outfd) == -1) errExit("close");

Linux/UNIX System Programming ©2026 M. Kerrisk File I/O 3-18 §3.2

Universality of I/O

The fundamental I/O system calls work on almost all file
types:
$ ls > mylist
$./copy mylist new # Regular file

$./copy mylist /dev/tty # Device

$ mkfifo f # FIFO
$ cat f & # (reads from FIFO)
$./copy mylist f # (writes to FIFO)

Linux/UNIX System Programming ©2026 M. Kerrisk File I/O 3-19 §3.2

Outline
3 File I/O 3-1
3.1 File I/O overview 3-3
3.2 open(), read(), write(), and close() 3-8
3.3 API summary 3-20
3.4 Exercises 3-22

API summary

int open(const char *pathname, int flags, ... /* mode_t mode */);
// Returns a file descriptor

ssize_t read(int fd, void *buffer, size_t count);
// Returns: # of bytes actually read or 0 for EOF

ssize_t write(int fd, const void *buffer, size_t count);
// Returns: # of bytes actually written

int close(int fd);

Linux/UNIX System Programming ©2026 M. Kerrisk File I/O 3-21 §3.3

Outline
3 File I/O 3-1
3.1 File I/O overview 3-3
3.2 open(), read(), write(), and close() 3-8
3.3 API summary 3-20
3.4 Exercises 3-22

Notes for online practical sessions

Small groups in breakout rooms
Write a note into the Discord #general channelif you have a
preferred group

We will go faster, if groups collaborate on solving the
exercise(s)

You can share a screen in your room
I will circulate regularly between rooms to answer questions
Zoom has an “Ask for help” button...
Keep an eye on the Discord #general channel

Perhaps with further info about exercise;
Or a note that the exercise merges into a break

When your room has finished, write a message in the Discord
#general channel: “*** Room X has finished ***”

Then I have an idea of how many people have finished
Linux/UNIX System Programming ©2026 M. Kerrisk File I/O 3-23 §3.4

Shared screen etiquette

It may help your colleagues if you use a larger than normal font!
In many environments (e.g., xterm, VS Code), we can adjust the
font size with Control+Shift+“+” and Control+“-”
Or (e.g., emacs) hold down Control key and use mouse wheel

Long shell prompts make reading your shell session difficult
Use PS1='$ ' or PS1='# '

Low contrast color themes are difficult to read; change this if you can
Turn on line numbering in your editor

In vim / neovim use: :set number
In emacs use: M-x display-line-numbers-mode <RETURN>

M-x means Left-Alt+x

For collaborative editing, relative line-numbering is evil....
In vim / neovim use: :set nornu
In emacs, the following should suffice:
M-: (display-line-numbers-mode) <RETURN>
M-: (setq display-line-numbers 'absolute) <RETURN>

M-: means Left-Alt+Shift+:

Linux/UNIX System Programming ©2026 M. Kerrisk File I/O 3-24 §3.4

Using tmate in in-person practical sessions

In order to share an X-term session with others, do the following:

Enter the command tmate in an X-term, and you’ll see the following:
$ tmate
...
Connecting to ssh.tmate.io...
Note: clear your terminal before sharing readonly access
web session read only: ...
ssh session read only: ssh S0mErAnD0m5Tr1Ng@lon1.tmate.io
web session: ...
ssh session: ssh S0mEoTheRrAnD0m5Tr1Ng@lon1.tmate.io

Share last “ssh” string with colleague(s) via a text channel
Or: "ssh session read only" string gives others read-only access

Your colleagues should paste that string into an X-term...

Now, you are sharing an X-term session in which anyone can type
Any "mate" can cut the connection to the session with the
3-character sequence <ENTER> ∼ .

To see above message again: tmate show-messages

Linux/UNIX System Programming ©2026 M. Kerrisk File I/O 3-25 §3.4

Exercise notes

For many exercises, there are templates for the solutions
Filenames: ex.*.c
Look for FIXMEs to see what pieces of code you must add
" You will need to edit the corresponding Makefile to add
a new target for the executable

Look for the EXERCISE_FILES_EXE macro
-EXERCISE_FILES_EXE = # ex.prog_a ex.prob_b
+EXERCISE_FILES_EXE = ex.prog_a # ex.prog_b

Get a make tutorial now if you need one

Linux/UNIX System Programming ©2026 M. Kerrisk File I/O 3-26 §3.4

Exercises

1 Using open(), close(), read(), and write(), implement the command
tee [-a] file ([template: fileio/ex.tee.c]). This command
writes a copy of its standard input to standard output and to file. If
file does not exist, it should be created. If file already exists, it
should be truncated to zero length (O_TRUNC). The program should
support the -a option, which appends (O_APPEND) output to the file if
it already exists, rather than truncating the file.
Some hints:

You can build ../libtlpi.a by doing make in source code root directory.
Standard input & output are automatically opened for a process.
Remember that you will need to add a target in the Makefile!
After first doing some simple command-line testing, test using the unit test in
the Makefile: make tee_test.
Why does “man open” show the wrong manual page? It finds a page in the
wrong section first. Try “man 2 open” instead.
while inotifywait -q . ; do echo -e '\n\n'; make; done

You may need to install the inotify-tools package
Command-line options can be parsed using getopt(3).

Linux/UNIX System Programming ©2026 M. Kerrisk File I/O 3-27 §3.4

This page intentionally blank

