
Linux/UNIX IPC Programming

Alternative I/O Models: epoll

Michael Kerrisk, man7.org © 2026

mtk@man7.org

January 2026

Outline Rev: # d49d0b54be95

12 Alternative I/O Models: epoll 12-1
12.1 Problems with poll() and select() 12-3
12.2 The epoll API 12-6
12.3 Creating an epoll instance: epoll_create() 12-11
12.4 Populating the interest list: epoll_ctl() 12-13
12.5 epoll events 12-18
12.6 Waiting for events: epoll_wait() 12-20
12.7 Example program 12-25
12.8 Performance considerations 12-31
12.9 API summary 12-37
12.10 Exercises 12-39
12.11 Homework exercises 12-44
12.12 Edge-triggered notification 12-48
12.13 Exercises 12-57
12.14 epoll API quirks 12-66
12.15 Homework exercises 12-75

Outline
12 Alternative I/O Models: epoll 12-1
12.1 Problems with poll() and select() 12-3
12.2 The epoll API 12-6
12.3 Creating an epoll instance: epoll_create() 12-11
12.4 Populating the interest list: epoll_ctl() 12-13
12.5 epoll events 12-18
12.6 Waiting for events: epoll_wait() 12-20
12.7 Example program 12-25
12.8 Performance considerations 12-31
12.9 API summary 12-37
12.10 Exercises 12-39
12.11 Homework exercises 12-44
12.12 Edge-triggered notification 12-48
12.13 Exercises 12-57
12.14 epoll API quirks 12-66
12.15 Homework exercises 12-75

Problems with poll() and select()

poll() + select() are portable, long-standing, and widely used
But, there are scalability problems when monitoring many
FDs, because, on each call:

1 Program passes a data structure to kernel describing all FDs
to be monitored

2 The kernel must recheck all specified FDs for readiness
This includes hooking (and later unhooking) process to FD
wait queues to handle case where it is necessary to block
because no FD is ready (can be expensive if many FDs)

3 The kernel passes a modified data structure describing
readiness of all FDs back to program in user space

4 After the call, the program must inspect readiness state of
all FDs in modified data

⇒ Cost of select() and poll() scales with number of FDs
being monitored

[TLPI §63.2.5]
Linux/UNIX IPC Programming ©2026 M. Kerrisk Alternative I/O Models: epoll 12-4 §12.1

Problems with poll() and select()

poll() and select() have a design problem:
For many applications, set of monitored FDs is static

(Or set changes only slowly)
But, kernel doesn’t remember monitored FDs between calls

⇒ Info on all FDs must be copied back & forth on each call

epoll improves performance by fixing this design problem
Kernel maintains a persistent set of FDs that application is
interested in

epoll cost scales according to number of I/O events
Can give much better performance when monitoring
many FDs!

Especially if #active-FDs << #total-FDs

(Signal-driven I/O scales similarly, for same reasons)

[TLPI §63.4.5]
Linux/UNIX IPC Programming ©2026 M. Kerrisk Alternative I/O Models: epoll 12-5 §12.1

Outline
12 Alternative I/O Models: epoll 12-1
12.1 Problems with poll() and select() 12-3
12.2 The epoll API 12-6
12.3 Creating an epoll instance: epoll_create() 12-11
12.4 Populating the interest list: epoll_ctl() 12-13
12.5 epoll events 12-18
12.6 Waiting for events: epoll_wait() 12-20
12.7 Example program 12-25
12.8 Performance considerations 12-31
12.9 API summary 12-37
12.10 Exercises 12-39
12.11 Homework exercises 12-44
12.12 Edge-triggered notification 12-48
12.13 Exercises 12-57
12.14 epoll API quirks 12-66
12.15 Homework exercises 12-75

Overview

Like select() and poll(), epoll can monitor multiple FDs
epoll returns readiness information in similar manner to poll()
Two main advantages:

epoll can provide much better performance when
monitoring large numbers of FDs
epoll provides two notification modes: level-triggered and
edge-triggered

Default is level-triggered notification
select() and poll() provide only level-triggered notification
(Signal-driven I/O provides only edge-triggered notification)

Present on Linux since kernel 2.6.0 (2003)
Originally Linux-specific, but now available on a few other
OSes (e.g., Illumos)

[TLPI §63.4]
Linux/UNIX IPC Programming ©2026 M. Kerrisk Alternative I/O Models: epoll 12-7 §12.2

epoll instances

Central data structure of epoll API is an epoll instance
Persistent data structure maintained in kernel space

Referred to in user space via file descriptor
Can (abstractly) be considered as container for two lists:

Interest list: list of FDs to be monitored
Ready list: list of FDs that are ready for I/O

Ready list is (dynamic) subset of interest list

Linux/UNIX IPC Programming ©2026 M. Kerrisk Alternative I/O Models: epoll 12-8 §12.2

epoll APIs

The key epoll APIs are:
epoll_create() : create a new epoll instance and return FD
referring to instance

FD is used in the calls below
epoll_ctl() : modify interest list of epoll instance

Add FDs to/remove FDs from interest list
Modify events mask for FDs currently in interest list

epoll_wait() : return items from ready list of epoll instance
close() : close epoll FD

epoll instance torn down if this is last FD referring to instance

Linux/UNIX IPC Programming ©2026 M. Kerrisk Alternative I/O Models: epoll 12-9 §12.2

epoll kernel data structures and APIs

events data ...

...

...

...

...

...

...

Interest list

Populated by kernel

based on interest list

and I/O events

References to

entries in

interest list

Ready list

epoll instance
File descriptor from

epoll_create() refers to

Populated/modified

by calls to

epoll_ctl()

(subset of) events + data

returned by calls to

epoll_wait()

User space Kernel space

Linux/UNIX IPC Programming ©2026 M. Kerrisk Alternative I/O Models: epoll 12-10 §12.2

Outline
12 Alternative I/O Models: epoll 12-1
12.1 Problems with poll() and select() 12-3
12.2 The epoll API 12-6
12.3 Creating an epoll instance: epoll_create() 12-11
12.4 Populating the interest list: epoll_ctl() 12-13
12.5 epoll events 12-18
12.6 Waiting for events: epoll_wait() 12-20
12.7 Example program 12-25
12.8 Performance considerations 12-31
12.9 API summary 12-37
12.10 Exercises 12-39
12.11 Homework exercises 12-44
12.12 Edge-triggered notification 12-48
12.13 Exercises 12-57
12.14 epoll API quirks 12-66
12.15 Homework exercises 12-75

Creating an epoll instance: epoll_create()

#include <sys/epoll.h>
int epoll_create(int size);

Creates an epoll instance
size :

Since Linux 2.6.8: serves no purpose, but must be > 0
Backward compatibility: in older kernels, size==0 resulted in
an error, and this behavior has been preserved

Before Linux 2.6.8: an estimate of number of FDs to be
monitored via this epoll instance

Returns file descriptor on success, or –1 on error
When FD is no longer required, it should be closed via close()

Since Linux 2.6.27, epoll_create1() provides improved API
See the manual page

[TLPI §63.4.1]
Linux/UNIX IPC Programming ©2026 M. Kerrisk Alternative I/O Models: epoll 12-12 §12.3

Outline
12 Alternative I/O Models: epoll 12-1
12.1 Problems with poll() and select() 12-3
12.2 The epoll API 12-6
12.3 Creating an epoll instance: epoll_create() 12-11
12.4 Populating the interest list: epoll_ctl() 12-13
12.5 epoll events 12-18
12.6 Waiting for events: epoll_wait() 12-20
12.7 Example program 12-25
12.8 Performance considerations 12-31
12.9 API summary 12-37
12.10 Exercises 12-39
12.11 Homework exercises 12-44
12.12 Edge-triggered notification 12-48
12.13 Exercises 12-57
12.14 epoll API quirks 12-66
12.15 Homework exercises 12-75

Modifying the epoll interest list: epoll_ctl()

#include <sys/epoll.h>
int epoll_ctl(int epfd, int op, int fd, struct epoll_event *ev);

Modifies the interest list associated with epoll FD, epfd
fd : identifies which FD in interest list is to have its settings
modified

Can be FD for pipe, FIFO, terminal, socket, POSIX MQ
Can also be an epoll FD

An epoll FD indicates as readable if ready list is nonempty

Can’t be FD for a regular file or directory

[TLPI §63.4.2]
Linux/UNIX IPC Programming ©2026 M. Kerrisk Alternative I/O Models: epoll 12-14 §12.4

epoll_ctl() op argument

The epoll_ctl() op argument is one of:
EPOLL_CTL_ADD: add fd to interest list

ev specifies events to be monitored for fd
If fd is already in interest list ⇒ EEXIST

EPOLL_CTL_MOD: modify settings of fd in interest list
ev specifies new settings to be associated with fd
If fd is not in interest list ⇒ ENOENT

EPOLL_CTL_DEL: remove fd from interest list
Also removes corresponding entry in ready list, if present
ev is ignored
If fd is not in interest list ⇒ ENOENT
Closing FD automatically removes it from epoll interest lists

" But this is not reliable: close does not occur in some
cases! See later...

Linux/UNIX IPC Programming ©2026 M. Kerrisk Alternative I/O Models: epoll 12-15 §12.4

The epoll_event structure

epoll_ctl() ev argument is pointer to an epoll_event structure:
struct epoll_event {

uint32_t events; // epoll events (bit mask)
epoll_data_t data; // User data

};
typedef union epoll_data {

void *ptr; // Pointer to struct (or function)
int fd; // File descriptor
uint32_t u32; // E.g., array index
uint64_t u64; // E.g., hash table key

} epoll_data_t;

ev.events : bit mask of events to monitor for fd
(Similar to events mask given to poll())

data : info to be passed back to caller of epoll_wait() when
fd later becomes ready

Union field: value is specified in one of the members

Linux/UNIX IPC Programming ©2026 M. Kerrisk Alternative I/O Models: epoll 12-16 §12.4

Example: using epoll_create() and epoll_ctl()

int epfd = epoll_create(5);

struct epoll_event ev;
ev.data.fd = fd;
ev.events = EPOLLIN; /* Monitor for readability */

epoll_ctl(epfd, EPOLL_CTL_ADD, fd, &ev);

Linux/UNIX IPC Programming ©2026 M. Kerrisk Alternative I/O Models: epoll 12-17 §12.4

Outline
12 Alternative I/O Models: epoll 12-1
12.1 Problems with poll() and select() 12-3
12.2 The epoll API 12-6
12.3 Creating an epoll instance: epoll_create() 12-11
12.4 Populating the interest list: epoll_ctl() 12-13
12.5 epoll events 12-18
12.6 Waiting for events: epoll_wait() 12-20
12.7 Example program 12-25
12.8 Performance considerations 12-31
12.9 API summary 12-37
12.10 Exercises 12-39
12.11 Homework exercises 12-44
12.12 Edge-triggered notification 12-48
12.13 Exercises 12-57
12.14 epoll API quirks 12-66
12.15 Homework exercises 12-75

epoll events

Following table shows:
Bits given in ev.events to epoll_ctl()
Bits returned in evlist[].events by epoll_wait()

Bit epoll_ctl() ? epoll_wait() ? Description
EPOLLIN • • Normal-priority data can be read
EPOLLOUT • • Data can be written
EPOLLPRI • • High-priority data can be read
EPOLLRDHUP • • Shutdown on peer socket

EPOLLONESHOT • Disable monitoring after event
notification

EPOLLET • Employ edge-triggered notification
EPOLLHUP • A hangup occurred
EPOLLERR • An error has occurred

Other than EPOLLONESHOT and EPOLLET, bits have same meaning as similarly named
poll() bit flags
EPOLLIN, EPOLLOUT, EPOLLPRI, and EPOLLRDHUP, are returned by epoll_wait() only if
specified when adding FD using epoll_ctl()

[TLPI §63.4.3]
Linux/UNIX IPC Programming ©2026 M. Kerrisk Alternative I/O Models: epoll 12-19 §12.5

Outline
12 Alternative I/O Models: epoll 12-1
12.1 Problems with poll() and select() 12-3
12.2 The epoll API 12-6
12.3 Creating an epoll instance: epoll_create() 12-11
12.4 Populating the interest list: epoll_ctl() 12-13
12.5 epoll events 12-18
12.6 Waiting for events: epoll_wait() 12-20
12.7 Example program 12-25
12.8 Performance considerations 12-31
12.9 API summary 12-37
12.10 Exercises 12-39
12.11 Homework exercises 12-44
12.12 Edge-triggered notification 12-48
12.13 Exercises 12-57
12.14 epoll API quirks 12-66
12.15 Homework exercises 12-75

Waiting for events: epoll_wait()

#include <sys/epoll.h>
int epoll_wait(int epfd, struct epoll_event *evlist,

int maxevents, int timeout);

Returns info about ready FDs in interest list of epoll instance
of epfd
Blocks until at least one FD is ready
Info about ready FDs is returned in array evlist

I.e., can get information about multiple ready FDs with one
epoll_wait() call
(Caller allocates the evlist array)

maxevents : size of the evlist array

[TLPI §63.4.3]
Linux/UNIX IPC Programming ©2026 M. Kerrisk Alternative I/O Models: epoll 12-21 §12.6

Waiting for events: epoll_wait()

#include <sys/epoll.h>
int epoll_wait(int epfd, struct epoll_event *evlist,

int maxevents, int timeout);

timeout specifies a timeout for call:
–1: block until an FD in interest list becomes ready
0: perform a nonblocking “poll” to see if any FDs in interest
list are ready
> 0: block for up to timeout milliseconds or until an FD in
interest list becomes ready

epoll_pwait2() (Linux 5.11) allows timeout with nanosecond
precision

Return value:
> 0: number of items placed in evlist
0: no FDs became ready within interval specified by timeout
–1: an error occurred

Linux/UNIX IPC Programming ©2026 M. Kerrisk Alternative I/O Models: epoll 12-22 §12.6

Waiting for events: epoll_wait()

#include <sys/epoll.h>
int epoll_wait(int epfd, struct epoll_event *evlist,

int maxevents, int timeout);

Info about multiple FDs can be returned in the array evlist
Each element of evlist returns info about one file descriptor:

events is a bit mask of events that have occurred for FD
data is ev.data value currently associated with FD in the
interest list

NB: the FD itself is not returned!
Instead, we put FD into ev.data.fd when calling epoll_ctl(),
so that it is returned via epoll_wait()

(Or, put FD into a structure pointed to by ev.data.ptr)

Linux/UNIX IPC Programming ©2026 M. Kerrisk Alternative I/O Models: epoll 12-23 §12.6

Waiting for events: epoll_wait()

#include <sys/epoll.h>
int epoll_wait(int epfd, struct epoll_event *evlist,

int maxevents, int timeout);

� If > maxevents FDs are ready, successive epoll_wait()
calls round-robin through FDs

Helps prevent file descriptors being starved of attention
� In multithreaded programs:

While one thread is blocked in epoll_wait(), another thread
can modify interest list (epoll_ctl())
epoll_wait() call will return if a newly added FD becomes
ready

Linux/UNIX IPC Programming ©2026 M. Kerrisk Alternative I/O Models: epoll 12-24 §12.6

Outline
12 Alternative I/O Models: epoll 12-1
12.1 Problems with poll() and select() 12-3
12.2 The epoll API 12-6
12.3 Creating an epoll instance: epoll_create() 12-11
12.4 Populating the interest list: epoll_ctl() 12-13
12.5 epoll events 12-18
12.6 Waiting for events: epoll_wait() 12-20
12.7 Example program 12-25
12.8 Performance considerations 12-31
12.9 API summary 12-37
12.10 Exercises 12-39
12.11 Homework exercises 12-44
12.12 Edge-triggered notification 12-48
12.13 Exercises 12-57
12.14 epoll API quirks 12-66
12.15 Homework exercises 12-75

Example: altio/epoll_read.c

./epoll_read file...

Monitors one or more files using epoll API to see if input is
possible
Suitable files to give as arguments are:

FIFOs
Terminal device names

(May need to run sleep command in foreground on those
terminals, to prevent shell stealing input)

Linux/UNIX IPC Programming ©2026 M. Kerrisk Alternative I/O Models: epoll 12-26 §12.7

Example: altio/epoll_read.c (1)

int epfd = epoll_create(argc - 1);

for (j = 1; j < argc; j++) {
int fd = open(argv[j], O_RDONLY);
printf("Opened \"%s\" on fd %d\n", argv[j], fd);

struct epoll_event ev;
ev.events = EPOLLIN;
ev.data.fd = fd;
epoll_ctl(epfd, EPOLL_CTL_ADD, fd, &ev);

}
int numOpenFds = argc - 1;

Create an epoll instance, obtaining epoll FD
Open each of the files named on command line
Monitor each file for input (EPOLLIN)
Put fd into ev.data, so it is returned by epoll_wait()
Add the FD to epoll interest list (epoll_ctl())
Track number of open FDs (in numOpenFds)

Linux/UNIX IPC Programming ©2026 M. Kerrisk Alternative I/O Models: epoll 12-27 §12.7

Example: altio/epoll_read.c (2)

while (numOpenFds > 0) {
const int MAX_EVENTS = 5;
struct epoll_event evlist[MAX_EVENTS];

printf("About to epoll_wait()\n");
int ready = epoll_wait(epfd, evlist, MAX_EVENTS, -1);
if (ready == -1) {

if (errno == EINTR)
continue; /* Restart if interrupted by signal */

else
errExit("epoll_wait");

}

printf("Ready: %d\n", ready);

Loop, fetching epoll events and analyzing results
Loop terminates when no more FDs are open

epoll_wait() call places up to MAX_EVENTS events in evlist
timeout == –1 ⇒ infinite timeout

Return value from epoll_wait() is number of ready FDs
Linux/UNIX IPC Programming ©2026 M. Kerrisk Alternative I/O Models: epoll 12-28 §12.7

Example: altio/epoll_read.c (3)

for (int j = 0; j < ready; j++) {
printf(" fd=%d; events: %s%s\n", evlist[j].data.fd,

(evlist[j].events & EPOLLIN) ? "EPOLLIN " : "",
(evlist[j].events & EPOLLHUP) ? "EPOLLHUP " : "");

const int BUF_SIZE = 10;
char buf[BUF_SIZE];
ssize_t nr = read(evlist[j].data.fd, buf, BUF_SIZE);
if (nr == -1)

errExit("read");
...

}

Iterate through ready items in evlist
Display events bits for each ready FD
Read from ready FD

Note that we don’t even need to check events
EPOLLIN ⇒ read() won’t block
EPOLLHUP ⇒ read() will return 0 (without blocking)

Linux/UNIX IPC Programming ©2026 M. Kerrisk Alternative I/O Models: epoll 12-29 §12.7

Example: altio/epoll_read.c (4)

for (int j = 0; j < ready; j++) {
...
if (nr == 0) { /* read() indicated end-of-file */

printf(" read() returned 0; closing fd %d\n",
evlist[j].data.fd);

epoll_ctl(epfd, EPOLL_CTL_DEL, evlist[j].data.fd, NULL);
close(evlist[j].data.fd);
numOpenFds--;

} else {
printf(" read %zd bytes: %.*s\n", nr, (int) nr, buf);

}
}

}

If read() returned 0 (EOF):
Remove FD from epoll interest list
Close FD

Otherwise, display data that was read
%.*s ⇒ field width taken from argument list (nr)

Linux/UNIX IPC Programming ©2026 M. Kerrisk Alternative I/O Models: epoll 12-30 §12.7

Outline
12 Alternative I/O Models: epoll 12-1
12.1 Problems with poll() and select() 12-3
12.2 The epoll API 12-6
12.3 Creating an epoll instance: epoll_create() 12-11
12.4 Populating the interest list: epoll_ctl() 12-13
12.5 epoll events 12-18
12.6 Waiting for events: epoll_wait() 12-20
12.7 Example program 12-25
12.8 Performance considerations 12-31
12.9 API summary 12-37
12.10 Exercises 12-39
12.11 Homework exercises 12-44
12.12 Edge-triggered notification 12-48
12.13 Exercises 12-57
12.14 epoll API quirks 12-66
12.15 Homework exercises 12-75

When will epoll win?

Ideal epoll use case (vs select()/poll()):
Monitoring “large” number of FDs
Only “small” number of FDs are active (ready) at any
moment
Set of monitored FDs is static (or changes only “slowly”)

Performance of epoll vs poll()/select() is similar if:
Set of FDs being monitored is “small”

Performance of poll()/select() may even surpass epoll if:
At each monitoring step, “many” FDs are ready, or
Set of FDs being monitored changes “frequently”

Because of cost of epoll_ctl() syscalls to add/remove FDs
from interest list

Linux/UNIX IPC Programming ©2026 M. Kerrisk Alternative I/O Models: epoll 12-32 §12.8

Timings: notes and caveats

Measurements using altio/altio_speed.c
Simple model; single process, performing steps as follows:

Create multiple pipes (or sockets) †

Write data to a certain number of pipes
Measure time required for loop that repeatedly calls select(),
poll(), or epoll_wait()

⇒ Numbers on next slides are very simplistic benchmarks
Real world servers might, e.g., split load across thread pool
No measurement of network latency effects or cost of I/O
system calls or data processing work

† The program uses dup2() to arrange the read ends of the pipes to be contiguous FDs at
the low end of the number range; this maximizes the number of FDs that can be
monitored with select() and minimizes the size of the select() readfds argument

Linux/UNIX IPC Programming ©2026 M. Kerrisk Alternative I/O Models: epoll 12-33 §12.8

Timings: sparsely active file descriptors
monitored

FDs (N)
Elapsed time (seconds)
select() poll() epoll

1 0.23 0.19 0.16
10 0.48 0.46 0.16

100 2.78 3.18 0.16
1000 30.0 36.4 0.16

1 active FD, at mid-point in list of FDs; 1’000’000 monitoring
operations

./altio_speed -f N -l 1000000 -M mode

When the ratio of active vs total FDs is low, epoll clearly wins

But this reverses when the ratio is sufficiently large...

Linux/UNIX IPC Programming ©2026 M. Kerrisk Alternative I/O Models: epoll 12-34 §12.8

Timings: varying density of ready file descriptors
monitored

FDs (N)
ready
FDs (R) R/N Elapsed time (seconds)

select() poll() epoll
100 10 0.1 1.09 1.20 0.55
100 20 0.2 0.99 1.04 0.99
100 50 0.5 0.88 0.96 2.3
100 100 1.0 0.86 0.94 4.4

1000 100 0.1 13.3 14.0 4.5
1000 200 0.2 13.2 14.0 9.4
1000 500 0.5 12.9 13.5 23.6
1000 1000 1.0 11.8 12.7 47.3

Ready FDs randomly distributed; 1’000’000 monitoring operations
./altio_speed -f N -l 1000000 -w R mode

Times decrease for select() + poll() with larger numbers of ready FDs
Hypothesis: more ready FDs == shorter search time until first
ready FD is found ⇒ fewer FDs need to be hooked + unhooked

(See exercise 2 in following slides)

Linux/UNIX IPC Programming ©2026 M. Kerrisk Alternative I/O Models: epoll 12-35 §12.8

Timings: effect of interest list changes on epoll

FDs # interest list
changes (K)

Elapsed time
(seconds)

100 0 0.16
100 1 0.69
100 5 2.8
100 10 5.4

100 FDs, 1 active FD, at mid-point in list of FDs; 1’000’000
monitoring operations

./altio_speed -f 100 -l 1000000 -M -e K e

In each loop, K EPOLL_CTL_DEL and K EPOLL_CTL_ADD
operations are performed

I.e., 2 * K epoll_ctl() syscalls / loop
And syscalls are expensive...

Linux/UNIX IPC Programming ©2026 M. Kerrisk Alternative I/O Models: epoll 12-36 §12.8

Outline
12 Alternative I/O Models: epoll 12-1
12.1 Problems with poll() and select() 12-3
12.2 The epoll API 12-6
12.3 Creating an epoll instance: epoll_create() 12-11
12.4 Populating the interest list: epoll_ctl() 12-13
12.5 epoll events 12-18
12.6 Waiting for events: epoll_wait() 12-20
12.7 Example program 12-25
12.8 Performance considerations 12-31
12.9 API summary 12-37
12.10 Exercises 12-39
12.11 Homework exercises 12-44
12.12 Edge-triggered notification 12-48
12.13 Exercises 12-57
12.14 epoll API quirks 12-66
12.15 Homework exercises 12-75

API summary

// Create an epoll instance, returning file descriptor:
int epoll_create(int size);

// Modify epoll interest list:
int epoll_ctl(int epfd, int op, int fd, struct epoll_event *ev);

// 'op' is EPOLL_CTL_ADD / EPOLL_CTL_MOD / EPOLL_CTL_DEL

// Structure passed to epoll_ctl() / returned by epoll_wait():
struct epoll_event {

uint32_t events;
epoll_data_t data;

};
typedef union epoll_data {

void *ptr;
int fd;
uint32_t u32;
uint64_t u64;

};

// Fetch events from epoll ready list, returning then in 'evlist':
int epoll_wait(int epfd, struct epoll_event *evlist, int maxevents,

int timeout);
// 'timeout' can be: >0: milliseconds; 0: don't block; -1: block indefinitely

Linux/UNIX IPC Programming ©2026 M. Kerrisk Alternative I/O Models: epoll 12-38 §12.9

Outline
12 Alternative I/O Models: epoll 12-1
12.1 Problems with poll() and select() 12-3
12.2 The epoll API 12-6
12.3 Creating an epoll instance: epoll_create() 12-11
12.4 Populating the interest list: epoll_ctl() 12-13
12.5 epoll events 12-18
12.6 Waiting for events: epoll_wait() 12-20
12.7 Example program 12-25
12.8 Performance considerations 12-31
12.9 API summary 12-37
12.10 Exercises 12-39
12.11 Homework exercises 12-44
12.12 Edge-triggered notification 12-48
12.13 Exercises 12-57
12.14 epoll API quirks 12-66
12.15 Homework exercises 12-75

Exercises

1 Write a client ([template: altio/ex.is_chat_cl.c]) that communicates with the
TCP chat server program, is_chat_sv.c. The program should be run with the
following command line:

./is_chat_cl <host> <port> [<nickname>]

The program should create a connection to the server, and then use the epoll API to
monitor both the terminal and the TCP socket for input. All input that becomes
available on the socket should be written to the terminal and vice versa.

Each time the program sends input from the terminal to the socket, that input
should be prepended by the nickname supplied on the command line. If no
nickname is supplied, then use the string returned by getlogin(3).

For the purpose of writing the nickname plus message to the socket, you
may find it useful to use dprintf(3) :

int dprintf(int fd, const char *format, ...);

Like fprintf(), dprintf() performs formatted output, but writes directly to a file
descriptor rather than to a file stream (as is done by fprintf()). (There is
already one example of the use of dprintf() in the solution template.)
Both the terminal and the socket will indicate as readable (EPOLLIN) when
input becomes available or when an end-of-file condition occurs.

Linux/UNIX IPC Programming ©2026 M. Kerrisk Alternative I/O Models: epoll 12-40 §12.10

Exercises

The program should terminate if it detects end-of-file on either file descriptor.
Calling epoll_wait() with maxevents==1 will simplify the code!

struct epoll_event rev;
epoll_wait(epfd, &rev, 1, -1);

(This is simpler, because then you don’t have to iterate through an array that
would in any case contain at most two entries.)
As a simplification, you can assume that the socket is always writable (i.e., you
don’t need to monitor for the socket for EPOLLOUT).
Bonus points if you find a way to crash the server (reproducibly)!

2 U Consider the observation on slide 12-35, that when large numbers of file
descriptors are ready, then poll() and select() are faster, perhaps because fewer FD
wait queues need to be hooked and unhooked. We can explore this hypothesis by
comparing the timing measurements from two different executions of the
altio_speed.c program:

$ cd lsp/altio
$ sudo prlimit --nofile=10000:10000 --pid=$$ # Raise shell's FD limit
$ time ./altio_speed -f 1000 -l 100000 -x 999 p
$ time ./altio_speed -f 1000 -l 100000 -x 0 p

Linux/UNIX IPC Programming ©2026 M. Kerrisk Alternative I/O Models: epoll 12-41 §12.10

Exercises

In the above, 1000 FDs are monitored 100’000 times using poll(), and just one of
the FDs is ready. In the first case, the ready FD is at the end of the pollfd array;
consequently, the kernel needs to hook (and later unhook) the process on wait
queues for the 999 preceding FDs. In the second case, the ready FD is at the start of
the array; thus, the kernel knows that it will not be necessary for the poll() call to
block, so that no hooking will need to be done for any of the remaining FDs.

Run the two commands. Is there a notable difference in the displayed timings?
Repeat the experiment for select() (change p to s).

3 U U U Write the chat server that matches the client in exercise 1. ([template:
altio/ex.is_chat_sv.c]). Note the following points:

The program should take one command-line argument: the port number to
which it should bind its listening socket.
The program should accept and handle multiple simultaneous client
connections. Input read from any client should be broadcast to all other clients.
Use the epoll API to manage the file descriptors.
You should use nonblocking file descriptors to ensure that the server never
blocks when accepting connections or when reading or writing to clients.
When the server detects end-of file or an error (other than EAGAIN) while
reading or writing on a client socket, it should remove that socket from the
epoll interest list and close the socket.

Linux/UNIX IPC Programming ©2026 M. Kerrisk Alternative I/O Models: epoll 12-42 §12.10

