Linux Capabilities and Namespaces

Capabilities

Michael Kerrisk, man7.org © 2026

mtk@man7.org

January 2026

Outline
3 Capabilities 3-1
3.1 Overview 3-3
3.2 Process and file capabilities 3-8
3.3 Permitted and effective capabilities 3-13
3.4 Setting and viewing file capabilities 3-16
3.5 Exercises 3-23

3.6 Capabilities-dumb and capabilities-aware applications 3-30

3.7 Text-form capabilities
3.8 Exercises

3-34
3-37

Outline

3 Capabilities 3-1
3.1 Overview 3-3

Rationale for capabilities

@ Traditional UNIX privilege model divides users into two
groups:
e Normal users, subject to privilege checking based on UID and
GIDs

o Effective UID 0 (superuser) bypasses many of those checks

@ Coarse granularity is a problem:

e E.g., to give a process power to change system time, we
must give it all powers of superuser

@ = No limit on possible damage if program is compromised

[TLPI §39.1]

.org

Linux Capabilities and Namespaces ©2026 M. Kerrisk Capabilities 3-4 8§31

Rationale for capabilities

@ Capabilities divide power of superuser into small pieces

e 41 capabilities, as at Linux 6.18

e Traditional superuser == process that has full set of

capabilities

@ Goal: replace set-UID-root programs with programs that

have capabilities

e Compromise in set-UID-root binary = very dangerous

e Compromise in binary with file capabilities = less dangerous

@ Capabilities are not specified by POSIX
e A 1990s standardization effort was ultimately abandoned

@ POSIX.1le attempted to standardize capabilities, MAC, ACLs, & auditing

e Something similar exists on a few other systems
e E.g., Solaris privileges

.org

Linux Capabilities and Namespaces

©2026 M. Kerrisk

Capabilities

A selection of Linux capabilities

Capability

Permits process to

CAP_CHOWN
CAP_DAC_OVERRIDE
CAP_DAC_READ SEARCH
CAP_IPC_LOCK
CAP_FOWNER
CAP_KILL

CAP_NET ADMIN
CAP_SETFCAP
CAP_SETGID
CAP_SETPCAP
CAP_SETUID
CAP_SYS_ADMIN
CAP_SYS_B0OOT
CAP_SYS_NICE
CAP_SYS_MODULE
CAP_SYS_RESOURCE
CAP_SYS_TIME

Make arbitrary changes to file UIDs and GIDs
Bypass file RWX permission checks

Bypass file R and directory X permission checks
Lock memory

chmod(), utime(), set ACLs on arbitrary files
Send signals to arbitrary processes

Various network-related operations

Set file capabilities

Make arbitrary changes to process’s (own) GIDs
Make changes to process's (own) capabilities
Make arbitrary changes to process’s (own) UIDs
Perform a wide range of system admin tasks
Reboot the system

Change process priority and scheduling policy
Load and unload kernel modules

Raise process resource limits, override some limits
Modify the system clock

More details: capabilities(7) manual page and TLPI §39.2

.org

Linux Capabilities and Namespaces

©2026 M. Kerrisk

Capabilities

35 §3.1

36 §3.1

Supporting capabilities

@ To support implementation of capabilities, the kernel must:
@ Check process capabilities for each privileged operation
e Cf. traditional check: is process's effective UID 07

@ Provide system calls so a process can modify its capabilities
@ So process can raise (add) and lower (drop) capabilities

o (Capabilities analog of set*id() calls)

© Support attaching capabilities to executable files
@ When file is executed, process gains attached capabilities

e (Capabilities analog of set-UID-root program)
@ Implemented as follows:

e Support for first two pieces available since Linux 2.2 (1999)
o Support for file capabilities added in Linux 2.6.24 (2008)

o (Delay due to design concerns rather than technical reasons)

[TLPI §39.4]
Linux Capabilities and Namespaces ©2026 M. Kerrisk Capabilities 3-7 8§31
Outline
3 Capabilities 3-1

3.2 Process and file capabilities 3-8

Process and file capabilities

@ Processes and (binary) files can each have capabilities
@ Process capabilities define power of process to do
privileged operations
e Traditional superuser == process that has all capabilities
@ File capabilities are a mechanism to give a process
capabilities when it execs the file

e Stored in security.capability extended attribute
o (File metadata; getfattr -m - <file>)

[TLPI §39.3]

Linux Capabilities and Namespaces ©2026 M. Kerrisk Capabilities 3-9 §32

Process and file capability sets

@ Capability set: bit mask representing a group of capabilities

e Each process' has 3* capability sets:
e Permitted

o Effective
e Inheritable

@ An executable file may have 3 associated capability sets:
e Permitted

o Effective
e Inheritable

@ /\ Inheritable capabilities are little used; can mostly ignore

TIn truth, capabilities are a per-thread attribute
*In truth, there are more capability sets

.org

Linux Capabilities and Namespaces ©2026 M. Kerrisk Capabilities 3-10 §3.2

Viewing process capabilities

@ /proc/PID/status fields (hexadecimal bit masks):

$ cat /proc/4091/status

CapInh: 0000000000000000
CapPrm: 0000000000200020
CapEff: 0000000000000000

e See <sys/capability.h> for capability bit numbers
o Here: CAP_KILL (bit 5), CAP_SYS_ADMIN (bit 21)

o getpcaps(8) (part of libcap package):

$ getpcaps 4091
Capabilities for "4091': = cap_kill,cap_sys_admin+p

e More readable notation, but a little tricky to interpret
e Here, single '=" means all sets are empty

@ capsh(1) can be used to decode hex masks:

$ capsh --decode=200020
0x0000000000200020=cap_kill,cap_sys_admin

Linux Capabilities and Namespaces ©2026 M. Kerrisk Capabilities

3-11 §3.2

Modifying process capabilities

@ A process can modify its capability sets by:
o Raising a capability (adding it to set)
e Synonyms: add, enable
o Lowering a capability (removing it from set)
e Synonyms: drop, clear, remove, disable

e Mostly, we'll defer discussion of the APIs until later

@ There are various rules about changes a process can make to

its capability sets

.org

Linux Capabilities and Namespaces ©2026 M. Kerrisk Capabilities

3-12 §3.2

Outline

3 Capabilities 3-1

3.3 Permitted and effective capabilities 3-13

Process permitted and effective capabilities

@ Permitted : capabilities that process may employ
e “Upper bound” on effective capability set

e Once dropped from permitted set, a capability can't be
reacquired

o (But see discussion of execve() later)
e Can’t drop while capability is also in effective set

@ cap/partial_permitted_set_procs.sh shows processes with a
“partial” permitted set (i.e., nonempty, but not all capabilities)
@ Effective: capabilities that are currently in effect for process

e |l.e., capabilities that are examined when checking if a process
can perform a privileged operation

e Capabilities can be dropped from effective set and reacquired
@ Operate with least privilege....

e Reacquisition possible only if capability is in permitted set

[TLPI §39.3.3]

org

Linux Capabilities and Namespaces ©2026 M. Kerrisk Capabilities 3-14 §3.3

File permitted and effective capabilities

@ Permitted : a set of capabilities that may be added to
process’s permitted set during exec()

@ Effective: /\ a single bit that determines state of process'’s
new effective set after exec():

o If set, all capabilities in process’s new permitted set are also
enabled in effective set

e Useful for so-called capabilities-dumb applications
e If not set, process’'s new effective set is empty

@ File capabilities allow implementation of capabilities analog
of set-UID-root program

o Notable difference: setting effective bit off allows a program
to start in unprivileged state

e Set-UID/set-GID programs always start in privileged state

[TLPI §39.3.4]
Linux Capabilities and Namespaces ©2026 M. Kerrisk Capabilities 3-15 §3.3
Outline
3 Capabilities 3-1

3.4 Setting and viewing file capabilities 3-16

Setting and viewing file capabilities from the shell

@ setcap(8) sets capabilities on files
o Requires privilege (CAP_SETFCAP — “set file capabilities”)

e E.g., to set CAP_SYS_TIME as a permitted and effective
capability on an executable file:

$ cp /bin/date mydate
$ sudo setcap "cap_sys_time=pe" mydate

@ getcap(8) displays capabilities associated with a file

$ getcap mydate
mydate = cap_sys_time+ep

o filecap(8) searches for files that have capabilities:

$ filecap # Report files in $PATH
$ sudo filecap -a 2> /dev/null # Check all files on system
"2>" to discard "not supported" messages

e filecap is part of the libcap-ng-utils package
[TLPI §39.3.6]

.org

Linux Capabilities and Namespaces ©2026 M. Kerrisk Capabilities 3-17 8§34

cap/demo _file caps.c

int main(int argc, char *argv[]) {
cap_t caps = cap _get proc(); /* Fetch process capabilities */
char *str = cap_to_text(caps, NULL);
printf ("Capabilities: %s\n", str);

if (argec > 1) {
fd = open(argv([1], O _RDONLY);
if (£d >= 0)
printf ("Successfully opened %s\n", argv[1]);
else
printf ("Open failed: %s\n", strerror(errno));

}
exit (EXIT_SUCCESS) ;

@ Display process capabilities

@ Report result of opening file named in argv/[1] (if present)

.org

Linux Capabilities and Namespaces ©2026 M. Kerrisk Capabilities 3-18 §3.4

cap/demo_file caps.c

$ id —u

1000

$ cc -o demo_file_caps demo_file_caps.c -lcap

$./demo_file_caps /etc/shadow

Capabilities: =

Open failed: Permission denied

$ 1s -1 /etc/shadow

—————————— . 1 root root 1974 Mar 15 08:09 /etc/shadow

@ All steps in demos are done from unprivileged user ID 1000

@ Binary has no capabilities = process gains no capabilities

e “="in the output means “all capability sets empty”
e If you instead see “cap_wake_alarm=i", refer to slide 3-22

e open() of /etc/shadow fails
e Because /etc/shadow is readable only by privileged process

e Process needs CAP_DAC_READ_SEARCH capability

.org

Linux Capabilities and Namespaces ©2026 M. Kerrisk Capabilities 3-19 8§34

cap/demo _file caps.c

$ sudo setcap cap_dac_read_search=p demo_file_caps
$./demo_file_caps /etc/shadow

Capabilities: = cap_dac_read_search+p

Open failed: Permission denied

@ Binary confers permitted capability to process, but capability
is not effective

@ Process gains capability in permitted set

@ open() of /etc/shadow fails
o Because CAP_DAC_READ SEARCH is not in effective set

.org

Linux Capabilities and Namespaces ©2026 M. Kerrisk Capabilities 3-20 8§34

cap/demo_file caps.c

$ sudo setcap cap_dac_read_search=pe demo_file_caps
$./demo_file_caps /etc/shadow

Capabilities: = cap_dac_read_search+ep

Successfully opened /etc/shadow

@ Binary confers permitted capability and has effective bit on
@ Process gains capability in permitted and effective sets

@ open() of /etc/shadow succeeds

Linux Capabilities and Namespaces ©2026 M. Kerrisk Capabilities 3-21 8§34

An aside: CAP_WAKE ALARM

@ When inspecting various “unprivileged” processes on your
system, you may see that they have one inheritable capability:

$ getpcaps $3
1131471: cap_wake_alarm=i

@ Results from change in systemd v254 (2023)

@ Grants CAP_WAKE_ALARM to inheritable/ambient sets of user

session processes
@ (This default can be disabled by configuration)

@ Allows unprivileged users to set alarms that will wake system
from suspend state
e E.g., gnome-clocks

@ https://github.com/systemd/systemd/releases/tag/v254
https://github.com/systemd/systemd/issues/17564

.org

Linux Capabilities and Namespaces ©2026 M. Kerrisk Capabilities 3-22 8§34

https://github.com/systemd/systemd/releases/tag/v254
https://github.com/systemd/systemd/issues/17564

Outline

3 Capabilities 3-1

3.5 Exercises 3-23

Notes for online practical sessions

@ Small groups in breakout rooms

e Write a note into the Discord #general channelif you have a
preferred group

e We will go faster, if groups collaborate on solving the
exercise(s)

e You can share a screen in your room
@ | will circulate regularly between rooms to answer questions
@ Zoom has an “Ask for help” button...
@ Keep an eye on the Discord #general channel

e Perhaps with further info about exercise;

e Or a note that the exercise merges into a break

@ When your room has finished, write a message in the Discord
#tgeneral channel: “*** Room X has finished ***”

e Then | have an idea of how many people have finished

org

Linux Capabilities and Namespaces ©2026 M. Kerrisk Capabilities 3-24 8§35

Shared screen etiquette

@ It may help your colleagues if you use a larger than normal font!
@ In many environments (e.g., xterm, VS Code), we can adjust the
font size with Control+Shift+"“+" and Control+"“-"

e Or (e.g., emacs) hold down Control key and use mouse wheel

@ Long shell prompts make reading your shell session difficult
@ Use PS1='§ ' or PS1="# '

@ Low contrast color themes are difficult to read; change this if you can

@ Turn on line numbering in your editor
@ In vim / neovim use: :set number

@ In emacs use: M-x display-line-numbers-mode <RETURN>
@ M-x means Left-Alt+x

@ For collaborative editing, relative line-numbering is evil....
@ In vim / neovim use: :set nornu

@ In emacs, the following should suffice:

M-: (display-line-numbers-mode) <RETURN>
M-: (setq display-line-numbers 'absolute) <RETURN>

@ M-: means Left-Alt+4+Shift+:

.org

Linux Capabilities and Namespaces ©2026 M. Kerrisk Capabilities 3-25 8§35

Using tmate in in-person practical sessions

In order to share an X-term session with others, do the following:

@ Enter the command tmate in an X-term, and you'll see the following:

$ tmate

Connecting to ssh.tmate.io...

Note: clear your terminal before sharing readonly access
web session read only: .

ssh session read only: ssh SOmErAnDOm5TriNg@lonl.tmate.io
web session: ...

ssh session: ssh SOmEoTheRrAnDOm5Tr1Ng@lonl.tmate.io

@ Share last “ssh” string with colleague(s) via a text channel

@ Or: "ssh session read only" string gives others read-only access
@ Your colleagues should paste that string into an X-term...

@ Now, you are sharing an X-term session in which anyone can type

e Any "mate" can cut the connection to the session with the
3-character sequence <ENTER> ~ .

@ To see above message again: tmate show-messages

.org

Linux Capabilities and Namespaces ©2026 M. Kerrisk Capabilities 3-26 §3.5

Exercises

0 This exercises investigates some interactions between set-UID-root and file
capabilities.
e Compile and run the cap/demo_file_caps program, without adding any
capabilities to the file, and verify that when you run the binary, the process has
no capabilities:

$ cc -o demo_file_caps demo_file_caps.c -lcap
$./demo_file_caps

@ The string “=" means all capability sets empty.

© Now make the binary set-UID-root :

$ sudo chown root demo_file_caps # Change owner to root
$ sudo chmod u+s demo_file_caps # Turn on set-UID bit
$ 1s -1 demo_file_caps # Verify

-rwsr-xr-x. 1 root mtk 8624 Oct 1 13:19 demo_file_caps

e Run the binary and verify that the process gains all capabilities. (The string
“=ep” means “all capabilities in the permitted + effective sets".)
@ If the process does not gain all capabilities, check whether the filesystem
is mounted with the nosuid option (findmnt -T <dir>). If it is, either
remount the filesystem without that option or do the exercise on a
filesystem that is not mounted with nosuid (typically, /tmp should work).

.org

Linux Capabilities and Namespaces ©2026 M. Kerrisk Capabilities 3-27 §35

Exercises

0 Take the existing set-UID-root binary, add a permitted capability to it, and set
the effective capability bit:

$ sudo setcap cap_dac_read_search=pe demo_file_caps

© When you now run the binary, what capabilities does the process have?

$./demo_file_caps

The kernel’s rules for exec() are as follows:

@ If the binary has capabilities attached, then the process gets those
capabilities.

@ Otherwise, if the binary is set-UID-root, the process gets all capabilities.

0 Suppose you assign empty capability sets to the binary. When you execute the
binary, what capabilities does the process then have?

$ sudo setcap = demo_file_caps
$ getcap demo_file_caps
$./demo_file_caps

.org

Linux Capabilities and Namespaces ©2026 M. Kerrisk Capabilities 3-28 8§35

Exercises

e Use the following command to remove capabilities from the binary and verify
that when executed, the binary once more grants all capabilities to the process:

$ sudo setcap -r demo_file_caps
$ getcap demo_file_caps
$./demo_file_caps

e Use the following command to find the binaries on your system that have capabilities

attached:

$ sudo filecap -a 2> /dev/null

Write the name of your distribution, and paste the list of binaries into the Discord

#general channel.

.org

Linux Capabilities and Namespaces ©2026 M. Kerrisk Capabilities

3-29 §3.5

Outline

3 Capabilities

3.6 Capabilities-dumb and capabilities-aware applications

3-1

3-30

Capabilities-dumb and capabilities-aware applications

e Capabilities-dumb application:
o (Typically) an existing set-UID-root binary whose code we
can't change
@ Thus, binary does not know to use capabilities APlIs
(Binary simply uses traditional set*uid() APIs)
e But want to make legacy binary less dangerous than
set-UlID-root

@ Converse is capabilities-aware application
e Program that was written/modified to use capabilities APls

e Set binary up with file effective capability bit off

e Program “knows” it must use capabilities APIs to enable
effective capabilities

Linux Capabilities and Namespaces ©2026 M. Kerrisk Capabilities 3-31 8§3.6

Adding capabilities to a capabilities-dumb application

To convert existing set-UID-root binary to use file capabilities:

@ Setup:
e Binary remains set-UlID-root
e Enable a subset of file permitted capabilities + set effective

bit on
e l.e., capabilities-dumb == binary with effective bit on

o (Note: code of binary isn't changed)

@ Operation:

o When binary is executed, process gets (only) the specified
capabilities in its permitted + effective sets

e IOW: file capabilities override effect of set-UID-root bit, which
would normally confer all capabilities to process
e Process UID changes between zero and nonzero
automatically raise/lower process’s capabilities
o (Covered in more detail later)

org

Linux Capabilities and Namespaces ©2026 M. Kerrisk Capabilities 3-32 §3.6

How do | work out what capabilities a program needs?

Some possibilities to discover what capabilities are needed by an
arbitrary program:
@ System call manual pages (section 2) are a good start
e Look for capability requirements documented in
DESCRIPTION or ERRORS

@ Run the program (without capabilities) under strace(1):

e System call failures due to lack of capabilities normally return
EPERM in errno

e /\ But not all EPERM errors are due to lack of capabilities

e If program displays an error message that seems to relate to
capabilities, look in trace output for nearby EPERM errors
@ Using strace —v so that strace doesn’t abbreviate strings may be helpful

@ In extreme cases, you may need to read kernel source

Linux Capabilities and Namespaces ©2026 M. Kerrisk Capabilities 3-33 8§3.6
Outline
3 Capabilities 3-1

3.7 Text-form capabilities 3-34

Textual representation of capabilities

@ Both setcap(8) and getcap(8) work with textual
representations of capabilities

o Syntax described in cap_from_text(3) manual page

@ String read left to right, containing space-separated clauses
o (The capability sets are initially considered to be empty)
o Clause: caps-list operator flags [operator flags] ...
e caps-list is comma-separated list of capability names, or all
@ operatoris +, -, or =
o flags is zero or more of p (permitted), e (effective), or
i (inheritable)
o Clause can contain multiple [operator flags] parts:

e E.g., "cap_sys_time+p-i" (is same as
"cap_sys_time+p cap_sys_time-i")

.org

Linux Capabilities and Namespaces ©2026 M. Kerrisk Capabilities 3-35 8§3.7

Textual representation of capabilities

Operators:

@ + operator: raise capabilities in sets specified by flags

@ - operator: lower capabilities in sets specified by flags

@ = operator:

e Raise capabilities in sets specified by flags;
lower those capabilities in remaining sets

e So, "CAP_KILL=p" is same as "CAP_KILL+p-ie"
e caps-list can be omitted; defaults to all

e flags can be omitted = clear capabilities from all sets
= Thus: "=" means clear all capabilities in all sets

@ What does "=p cap kill,cap_sys_admin+e" mean?
o All capabilities in permitted set, plus CAP_KILL and
CAP_SYS ADMIN in effective set

.org

Linux Capabilities and Namespaces ©2026 M. Kerrisk Capabilities 3-36 §3.7

Outline

3 Capabilities 3-1

3.8 Exercises 3-37

Exercises

0 What capability bits are enabled by each of the following text-form capability
specifications?

@ "=p"

@ "="

@ '"cap_setuid=p cap_sys_time+pie"
@ "=p cap_kill-p"

@ '"cap_kill=p = cap_sys_admin+pe"

@ '"cap_chown=i cap_kill=pe cap_setfcap,cap_chown=p"

e The program cap/cap_text.c takes a single command-line argument, which is a
text-form capability string. It converts that string to an in-memory representation
and then iterates through the set of all capabilities, printing out the state of each
capability within the permitted, effective, and inheritable sets. It thus provides a
method of verifying your interpretation of text-form capability strings. Try supplying
each of the above strings as an argument to the program (remember to enclose the
entire string in quotes!) and check the results against your answers to the previous
exercise.

.org

Linux Capabilities and Namespaces ©2026 M. Kerrisk Capabilities 3-38 §3.8

